From Words to Meaning: Implementing Word2Vec from Scratch
Word embeddings are one of the most transformative developments in Natural Language Processing (NLP). They solve a fundamental problem: how can we rep...
From Words to Meaning: Implementing Word2Vec from Scratch
Word embeddings are one of the most transformative developments in Natural Language Processing (NLP). They solve a fundamental problem: how can we represent words as numerical vectors that capture their meaning and relationships?
Why We Need Numerical Word Representations
Machine learning models, including neural networks, classifiers, and other algorithms, operate on numerical data. They can’t directly process raw text like “cat” or “dog”. To use words in these models, we must convert them into numerical vectors.
This conversion is crucial because it enables:
- Mathematical operations: Computing similarities, distances, and transformations
- Learning from data: Training models to recognize patterns and relationships
- Generalization: Understanding semantic relationships beyond the training examples
The challenge is finding a representation that not only converts words to numbers, but also preserves and captures their semantic meaning and relationships.
The Problem with Traditional Representations
One common approach is one-hot encoding, where each word is represented by a sparse vector with a single 1 and all other elements as 0.
For example, if we have a vocabulary of 5 words ["dog", "cat", "car", "truck", "bird"], the one-hot encoding for “cat” would be:
1
[0, 1, 0, 0, 0]
This representation has critical limitations:
No semantic relationships: The vectors for “cat” and “dog” are as different from each other as “cat” and “car”, even though cats and dogs are semantically similar. The distance between any two different words is always the same.
High dimensionality: For a vocabulary of size V, each word requires a V-dimensional vector. With large vocabularies (tens or hundreds of thousands of words), this becomes computationally expensive.
Sparsity: Each vector is mostly zeros, which wastes memory and computation.
The Solution: Word Embeddings
Word embeddings solve these problems by learning dense, low-dimensional vector representations where:
Similar words have similar vectors: Words that share meaning or context are positioned close together in the vector space. For example, “cat” and “dog” will have vectors that are close to each other, while “cat” and “car” will be farther apart.
Semantic relationships are captured: The vector space encodes relationships like analogies (e.g., “king” - “man” + “woman” ≈ “queen”) and semantic similarity.
Efficient representation: Instead of V dimensions (where V is vocabulary size), we use a fixed, much smaller number of dimensions (typically 50-few thousands), making the representation both dense and computationally efficient.
Word2Vec: A Breakthrough in Static Embeddings
Word2Vec, introduced by Mikolov et al. in 2013, was a breakthrough that made high-quality word embeddings accessible and practical. It learns static embeddings where each word gets a single, fixed vector representation regardless of context.
While modern transformer models (like BERT and GPT) learn contextual embeddings (where the same word can have different vectors depending on context), Word2Vec-style static embeddings remain valuable for many applications and provide an excellent foundation for understanding how neural networks can learn meaningful word representations.
In this post, we will implement Word2Vec from scratch using Python and PyTorch, learning how to generate word embeddings that capture semantic relationships from raw text.
The Idea Behind Word2Vec
“You shall know a word by the company it keeps” - J.R. Firth
The fundamental insight behind Word2Vec is the distributional hypothesis: words that appear in similar contexts tend to have similar meanings. If two words frequently appear near the same surrounding words, they likely share semantic properties.
For example, consider the sentences:
- “The cat sat on the mat”
- “The dog sat on the mat”
Since “cat” and “dog” appear in similar contexts (both before “sat on the mat”), they should have similar vector representations. This is exactly what Word2Vec learns to do.
How Word2Vec Works
Word2Vec learns word embeddings by training a neural network to predict words from their context. The key insight is that by learning to predict context words, the model must learn meaningful word representations such that words that need to predict similar contexts will naturally develop similar vectors.
Word2Vec offers two architectures:
Skip-Gram: Given a target word, predict the surrounding context words. For example, given “cat”, predict words like “the”, “sat”, “on”, “mat” that appear nearby.
CBOW (Continuous Bag of Words): Given the surrounding context words, predict the target word. For example, given “the”, “sat”, “on”, “mat”, predict “cat”.
Both approaches learn embeddings that capture semantic relationships, but they optimize from different directions. We will implement the Skip-Gram model, which is often preferred for larger datasets and tends to produce better embeddings for infrequent words.
Math Behind Word2Vec
Let’s build up the mathematical formulation of Word2Vec step by step, starting with the intuitive goal and working our way to the optimization objective.
The Intuitive Goal
For Skip-Gram, we want to maximize the probability of correctly predicting context words given a target word. If we see the word “cat” in our text, we want our model to assign high probability to words like “the”, “sat”, “on”, “mat” that typically appear near “cat”.
The Objective Function
Given a sequence of training words $w_1, w_2, w_3, \ldots, w_T$, for each target word $w_t$, we want to maximize the probability of predicting all words within a context window of size $c$.
For a single target word $w_t$, we want to maximize: \(\prod_{-c \leq j \leq c, j \neq 0} p(w_{t+j} \mid w_t)\)
This is the probability of predicting all context words $w_{t-c}, \ldots, w_{t-1}, w_{t+1}, \ldots, w_{t+c}$ given the target word $w_t$.
Taking the logarithm (which converts products to sums and is numerically more stable), we get: \(\sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j} \mid w_t)\)
Averaging over all positions in the training sequence, our objective becomes: \(\frac{1}{T} \sum_{t=1}^{T} \sum_{-c\leq j\leq c, j\neq 0} \log p(w_{t+j} \mid w_t)\)
Goal: Maximize this quantity (or equivalently, minimize its negative, which becomes our loss function).
Modeling the Conditional Probability
Now we need to define $p(w_O \mid w_I)$ : The probability of seeing output word $w_O$ given input word $w_I$.
Word2Vec uses a simple but powerful approach: it represents each word with two vectors:
- Input embedding $v_{w_I}$: used when the word is the target (input)
- Output embedding $v’_{w_O}$: used when the word is in the context (output)
The similarity between a target word and a context word is measured by their dot product: $(v’{w_O})^{\top} v{w_I}$. Higher dot product means higher similarity, which should correspond to higher probability.
To convert these similarity scores into probabilities (which must sum to 1 over all possible context words), we use the softmax function:
\[p(w_O \mid w_I) = \frac{\exp((v'_{w_O})^{\top} v_{w_I})}{\sum_{w=1}^V \exp((v'_{w})^{\top} v_{w_I})}\]The numerator \(\exp((v'_{w_O})^{\top} v_{w_I})\) gives higher probability to words with high similarity. The denominator \(\sum_{w=1}^V \exp((v'_{w})^{\top} v_{w_I})\) normalizes over all $V$ words in the vocabulary, ensuring probabilities sum to 1.
The Computational Challenge
Here’s the problem: computing the softmax is expensive. This is fundamentally a multi-class classification problem: given a target word, we need to assign higher probability to the actual context words and lower probability to all other words in the vocabulary.
For each training example, computing the softmax requires:
- Compute dot products with all $V$ words in the vocabulary
- Exponentiate all $V$ values
- Sum them for normalization
With a vocabulary of 50,000 words and millions of training examples, this becomes computationally prohibitive. Each gradient update would require $O(V)$ operations, making training extremely slow.
Negative Sampling
Instead of comparing the target word against all $V$ words every time (expensive), we can approximate this by sampling. Over many training iterations, we’ll eventually compare against most words, but we only need to compute a few at a time.
Negative sampling transforms the multi-class classification problem into a simpler binary classification task:
- Positive examples: (target word, actual context word) pairs that appear together in the text
- Negative examples: (target word, random word) pairs that don’t appear together
Instead of computing probabilities over all $V$ words, we:
- Maximize the probability of the actual context word (positive example)
- Minimize the probability of $k$ randomly sampled words (negative examples)
Mathematical Formulation: We model this as binary classification where $D$ is a binary indicator:
- $D=1$ means words $w_I$ and $w_O$ appear together (positive pair)
- $D=0$ means they don’t appear together (negative pair)
The probability of a positive pair is: \(p(D=1 \mid w_I, w_O) = \sigma((v'_{w_O})^{\top} v_{w_I})\)
The probability of a negative pair is: \(p(D=0 \mid w_I, w_O) = \sigma(-(v'_{w_O})^{\top} v_{w_I})\)
where $\sigma(x) = \frac{1}{1 + e^{-x}}$ is the sigmoid function. The negative sign in $p(D=0)$ ensures that words with low similarity (low dot product) get low probability.
Why This Approximates Softmax:
- The softmax compares the target word against all $V$ words simultaneously
- Negative sampling compares against $k$ random words at a time
- Over many training iterations with different random samples, we effectively compare against most words in the vocabulary
- This stochastic approximation achieves similar learning while being orders of magnitude faster
For a target word $w_I$ and context word $w_O$, the objective becomes:
\[\log \sigma((v'_{w_O})^{\top} v_{w_I}) + \sum_{i=1}^{k} \log \sigma(-(v'_{w_i})^{\top} v_{w_I})\]where:
- The first term $\log \sigma((v’{w_O})^{\top} v{w_I})$ maximizes the probability that the actual context word $w_O$ appears with $w_I$
- The second term $\sum_{i=1}^{k} \log \sigma(-(v’{w_i})^{\top} v{w_I})$ minimizes the probability that $k$ randomly sampled words $w_i$ appear with $w_I$
Efficiency Gain: Instead of computing over all $V$ words, we only need to compute $k+1$ dot products (typically $k=5$ to $20$), reducing complexity from $O(V)$ to $O(k)$, which is orders of magnitude faster!
Step 6: Why This Works
By learning to distinguish real context words from random words, the model must learn embeddings where:
- Words that appear together have high dot products (similar vectors)
- Words that don’t appear together have low dot products (dissimilar vectors)
This naturally leads to the semantic clustering we want: similar words end up with similar embeddings. The stochastic sampling of negative words over many iterations ensures that the model eventually learns to distinguish the target word from most other words in the vocabulary, approximating the effect of the full softmax.
Alternative: Hierarchical Softmax
Another approach to avoid the full softmax is hierarchical softmax, which uses a binary tree structure over the vocabulary. Instead of computing over all words, it follows a path through the tree (requiring only $\log_2(V)$ operations). However, negative sampling is simpler to implement and often performs better in practice, which is why we’ll use it in our implementation.
Setup
Let’s start by importing the necessary libraries and loading the data.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import os
import re
import math
import random
import urllib.request
import zipfile
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from torch import optim
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from nltk.tokenize import word_tokenize
from tqdm import tqdm
import collections
1
2
import nltk
nltk.download('punkt_tab')
1
2
3
4
5
6
7
8
9
[nltk_data] Downloading package punkt_tab to
[nltk_data] /Users/ravi.mandliya/nltk_data...
[nltk_data] Package punkt_tab is already up-to-date!
True
Download and Prepare the Data
We will use the text8 dataset, which is a preprocessed version of the Wikipedia corpus.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
DATA_URL = 'https://mattmahoney.net/dc/text8.zip'
DATA_DIR = './data/'
ZIP_FILE_NAME = 'text8.zip'
TEXT_FILE_NAME = 'text8'
ZIP_FILE_PATH = os.path.join(DATA_DIR, ZIP_FILE_NAME)
TEXT_FILE_PATH = os.path.join(DATA_DIR, TEXT_FILE_NAME)
# Create data directory if it doesn't exist
os.makedirs(DATA_DIR, exist_ok=True)
# Download and extract if the text file doesn't exist
if not os.path.exists(TEXT_FILE_PATH):
print(f"Downloading {ZIP_FILE_NAME}...")
urllib.request.urlretrieve(DATA_URL, ZIP_FILE_PATH)
print(f"Extracting {ZIP_FILE_NAME}...")
with zipfile.ZipFile(ZIP_FILE_PATH, 'r') as zip_ref:
zip_ref.extractall(DATA_DIR)
print(f"Data extracted to {DATA_DIR}")
else:
print(f"Text file already exists at {TEXT_FILE_PATH}")
# Read and tokenize the text
print(f"Reading text from {TEXT_FILE_PATH}...")
with open(TEXT_FILE_PATH, 'r', encoding='utf-8') as f:
text = f.read()
words = word_tokenize(text)
print(f"Total words: {len(words)}")
print(f"First 100 words: {words[:100]}")
1
2
3
4
Text file already exists at ./data/text8
Reading text from ./data/text8...
Total words: 17007698
First 100 words: ['anarchism', 'originated', 'as', 'a', 'term', 'of', 'abuse', 'first', 'used', 'against', 'early', 'working', 'class', 'radicals', 'including', 'the', 'diggers', 'of', 'the', 'english', 'revolution', 'and', 'the', 'sans', 'culottes', 'of', 'the', 'french', 'revolution', 'whilst', 'the', 'term', 'is', 'still', 'used', 'in', 'a', 'pejorative', 'way', 'to', 'describe', 'any', 'act', 'that', 'used', 'violent', 'means', 'to', 'destroy', 'the', 'organization', 'of', 'society', 'it', 'has', 'also', 'been', 'taken', 'up', 'as', 'a', 'positive', 'label', 'by', 'self', 'defined', 'anarchists', 'the', 'word', 'anarchism', 'is', 'derived', 'from', 'the', 'greek', 'without', 'archons', 'ruler', 'chief', 'king', 'anarchism', 'as', 'a', 'political', 'philosophy', 'is', 'the', 'belief', 'that', 'rulers', 'are', 'unnecessary', 'and', 'should', 'be', 'abolished', 'although', 'there', 'are', 'differing']
Build the Vocabulary
We’ll create mappings between words and integer IDs and remove rare words to keep vocabulary manageable. The code is below followed by the explanation.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class Word2VecDataset(Dataset):
def __init__(self, words, word_to_idx, word_freqs, window_size=5,
negative_sample_counts=5, subsample_threshold=1e-3):
# words: already tokenized list of words (from Word2Vec class)
# word_to_idx: {word: idx} mapping from Word2Vec class
# word_freqs: {word: frequency} mapping from Word2Vec class (already computed)
self.words = words
self.word_to_idx = word_to_idx
self.word_freqs = word_freqs # Use precomputed frequencies from Word2Vec
self.vocab_size = len(word_to_idx) # Vocabulary size for negative sampling
self.window_size = window_size
self.negative_sample_counts = negative_sample_counts
self.subsample_threshold = subsample_threshold
# Convert words to indices, filtering out words not in vocabulary
self.encoded_text = [self.word_to_idx[word] for word in words if word in self.word_to_idx]
# Compute word frequencies by index for subsampling
# word_freqs is {word: frequency}, we need {idx: frequency}
self.word_freqs_by_idx = {word_to_idx[word]: freq for word, freq in word_freqs.items() if word in word_to_idx}
# subsample probability: probability to keep each word
# Formula: P(keep) = min(1.0, sqrt(t / f(w))) where t is threshold, f(w) is frequency
# Rare words (f < t): P(keep) = 1.0 (always kept)
# Frequent words (f > t): P(keep) = sqrt(t/f) < 1.0 (discarded more often)
self.subsample_probs = {
idx: min(1.0, np.sqrt(self.subsample_threshold / freq)) if freq > 0 else 1.0
for idx, freq in self.word_freqs_by_idx.items()
}
self.pairs = []
np.random.seed(42) # Fixed seed for deterministic subsampling
random.seed(42)
for i, center_word in enumerate(self.encoded_text):
# Apply subsampling deterministically
if center_word not in self.subsample_probs:
continue
if np.random.rand() >= self.subsample_probs[center_word]:
continue
# Generate all context pairs for this center word
# Use random window size for variety (but deterministic with fixed seed)
context_window = random.randint(1, self.window_size)
start = max(0, i - context_window)
end = min(len(self.encoded_text), i + context_window + 1)
for j in range(start, end):
if i != j:
self.pairs.append((center_word, self.encoded_text[j]))
# Reset random seed for training randomness
np.random.seed()
random.seed()
self.negative_sample_weights = self._generate_negative_sample_weights()
def _generate_negative_sample_weights(self):
# Use vocab_size to ensure correct array size for negative sampling
# Convert word frequencies to counts for negative sampling distribution
# Only use words that are in the vocabulary
total_count = len(self.words)
freq = np.zeros(self.vocab_size)
for word in self.word_to_idx.keys():
if word in self.word_freqs:
idx = self.word_to_idx[word]
word_freq = self.word_freqs[word]
# Convert frequency back to count
freq[idx] = word_freq * total_count
else:
# If word is in vocab but not in word_freqs (shouldn't happen, but handle gracefully)
idx = self.word_to_idx[word]
freq[idx] = 0.0
# Apply power law: freq^0.75 (standard Word2Vec approach)
# This raises each word's count to the 3/4 power, which helps balance
# the distribution between frequent and rare words
freq = np.power(freq, 0.75)
# Normalize to get probability distribution
freq = freq / np.sum(freq)
return torch.FloatTensor(freq)
def __len__(self):
return len(self.pairs)
def __getitem__(self, idx):
# Simple O(1) lookup - pairs are already generated
target, context = self.pairs[idx]
# Generate negative samples on-the-fly
negs = torch.multinomial(
self.negative_sample_weights,
self.negative_sample_counts,
replacement=True
)
return torch.tensor(target, dtype=torch.long), torch.tensor(context, dtype=torch.long), negs
Building the Word2Vec Dataset
The Word2VecDataset class transforms raw text into training examples for the Skip-Gram model. This process involves several key steps, each with important mathematical foundations. Let’s break down how the dataset is constructed:
Step 1: Encoding Text to Indices
First, we convert words to integer indices for efficient processing:
1
self.encoded_text = [self.word_to_idx[word] for word in text if word in self.word_to_idx]
This creates a sequence of integer IDs, filtering out words not in our vocabulary.
Step 2: Subsampling Frequent Words
Word2Vec uses subsampling to balance the training data. Very frequent words (like “the”, “a”, “of”) provide less semantic information but dominate the training signal. Subsampling randomly discards these words with probability proportional to their frequency.
Mathematical Formulation: For a word $w$ with frequency $f(w)$ in the corpus, the probability of keeping the word is:
\[P(\text{keep } w) = \min\left(1.0, \sqrt{\frac{t}{f(w)}}\right)\]where $t$ is the subsampling threshold (typically $10^{-3}$ to $10^{-5}$).
Intuition:
- Rare words ($f(w) < t$): $P(\text{keep}) = 1.0$ : Always kept, preserving important semantic information
- Frequent words ($f(w) > t$): $P(\text{keep}) = \sqrt{t/f(w)} < 1.0$ : Discarded more often, reducing their dominance
For example, if $t = 0.001$ and a word appears with frequency $f(w) = 0.01$ (1% of all words):
- $P(\text{keep}) = \sqrt{0.001/0.01} = \sqrt{0.1} \approx 0.316$
This means we keep this word only about 31.6% of the time, effectively downweighting it in training.
Why $\sqrt{t/f(w)}$? This formula ensures that:
- Words with frequency exactly equal to the threshold are kept with probability 1.0
- The probability decreases smoothly as frequency increases
- Very frequent words (like “the”) are heavily downweighted
Step 3: Generating Training Pairs
For each center word $w_t$ at position $t$ in the (subsampled) text, we generate context pairs:
Random Context Window: Instead of a fixed window size, we use a random window size $c \in [1, \text{window_size}]$ for each center word. This adds variety to the training data.
Context Extraction: For a center word at position $i$ with window size $c$, we extract context words from positions $[i-c, i-1]$ and $[i+1, i+c]$.
Pair Generation: Each context word $w_{t+j}$ (where $j \neq 0$ and $ j \leq c$) is paired with the center word $w_t$ to create a training example $(w_t, w_{t+j})$.
Example: For the sentence “the quick brown fox jumps” with window_size=2:
- Center word “brown” at position 2
- Random window $c=2$ selected
- Context words: “the” (position 0), “quick” (position 1), “fox” (position 3), “jumps” (position 4)
- Generated pairs:
("brown", "the"),("brown", "quick"),("brown", "fox"),("brown", "jumps")
Step 4: Negative Sampling Distribution
Negative sampling requires a probability distribution over the vocabulary to sample “negative” (non-context) words. The original Word2Vec implementation uses a unigram distribution raised to the 3/4 power.
Mathematical Formulation: For each word $w$ with count $c(w)$ in the corpus, we compute:
\[P_n(w) = \frac{c(w)^{3/4}}{\sum_{w' \in V} c(w')^{3/4}}\]where $P_n(w)$ is the probability of sampling word $w$ as a negative example, and $V$ is the vocabulary.
Why $c(w)^{3/4}$? The 3/4 power (0.75) is a heuristic that:
- Reduces the dominance of very frequent words: Without the power, words like “the” would be sampled too often as negatives
- Increases the probability of moderately frequent words: This helps the model learn better distinctions
- Still favors frequent words over rare ones: Rare words are less useful as negative examples
Example: If “the” appears 100,000 times and “cat” appears 1,000 times:
- Without power: $P_n(\text{the}) / P_n(\text{cat}) = 100,000 / 1,000 = 100$
- With 3/4 power: $P_n(\text{the}) / P_n(\text{cat}) = 100,000^{0.75} / 1,000^{0.75} \approx 31,623 / 178 \approx 178$
The ratio is still large (178:1), but much smaller than 100:1, giving “cat” a better chance of being sampled.
Step 5: On-the-Fly Negative Sampling
During training, for each positive pair $(w_t, w_c)$, we sample $k$ negative words from $P_n(w)$:
1
negs = torch.multinomial(self.negative_sample_weights, self.negative_samples, replacement=True)
This creates $k$ negative examples $(w_t, w_{\text{neg}1}), \ldots, (w_t, w{\text{neg}k})$ where each $w{\text{neg}_i}$ is sampled according to $P_n(w)$.
Why on-the-fly? Generating negative samples during __getitem__ is efficient because:
- It avoids storing millions of pre-generated negative samples
torch.multinomialis highly optimized- The randomness helps with generalization
We created a dataset class that generates pairs of target and context words. It also generates negative samples on-the-fly.
Define the Model
We’ll use PyTorch to define the Word2Vec model. We will have two embedding matrices:
- Input embedding matrix $V \times d$: maps target words to their embeddings
- Output embedding matrix $V \times d$: maps context words to their embeddings
The model will learn two embedding matrices, one for the target words and one for the context words. We’ll use uniform initialization for the embeddings to ease the computation of the loss function.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class SkipGramModel(nn.Module):
def __init__(self, vocab_size, embedding_dim):
super().__init__()
self.in_embed = nn.Embedding(vocab_size, embedding_dim)
self.out_embed = nn.Embedding(vocab_size, embedding_dim)
self._init_weights()
def _init_weights(self):
initrange = 0.5 / self.in_embed.embedding_dim
self.in_embed.weight.data.uniform_(-initrange, initrange)
self.out_embed.weight.data.uniform_(-initrange, initrange)
def forward(self, center_words, context_words, negative_samples):
center_embeds = self.in_embed(center_words) # (batch_size, embedding_dim)
context_embeds = self.out_embed(context_words) # (batch_size, embedding_dim)
negative_embeds = self.out_embed(negative_samples) # (batch_size, negative_samples, embedding_dim)
# Compute the loss
pos_score = torch.sum(center_embeds * context_embeds, dim=1) # (batch_size,)
pos_score = torch.sigmoid(pos_score)
# Compute dot products: (batch_size, negative_samples, embedding_dim) @ (batch_size, embedding_dim, 1)
# center_embeds.unsqueeze(2) adds dimension: (batch_size, embedding_dim) -> (batch_size, embedding_dim, 1)
neg_score = torch.bmm(negative_embeds, center_embeds.unsqueeze(2)) # (batch_size, negative_samples, 1)
neg_score = torch.sigmoid(neg_score).squeeze(2) # (batch_size, negative_samples)
return pos_score, neg_score
def get_embedding(self, word_idx):
return self.in_embed(torch.LongTensor([word_idx])).detach()
def get_all_center_embeddings(self):
return self.in_embed.weight.data
Understanding the Skip-Gram Model Architecture
The SkipGramModel implements the core Word2Vec architecture using PyTorch. Let’s break down how it works:
Dual Embedding Matrices
Word2Vec uses two separate embedding matrices for each word:
in_embed: Input embeddings used when a word is the center/target word (the word we’re predicting context for)out_embed: Output embeddings used when a word is a context word (or negative sample)
This dual representation is a key design choice. While it doubles the number of parameters, it often leads to better embeddings because the model can learn different representations for the same word depending on its role (center vs. context).
Weight Initialization
The embeddings are initialized uniformly in the range $[-0.5/d, 0.5/d]$ where $d$ is the embedding dimension:
1
initrange = 0.5 / embedding_dim
This small initialization range helps with:
- Stable training: Prevents gradients from exploding early in training
- Symmetry breaking: Small random values ensure different words start with different embeddings
- Numerical stability: Keeps initial dot products in a reasonable range for the sigmoid function
Forward Pass: Computing Similarity Scores
The forward method computes how well the model predicts context words:
- Embedding Lookup:
center_embeds: Gets embeddings for target words (shape:(batch_size, embedding_dim))context_embeds: Gets embeddings for actual context words (shape:(batch_size, embedding_dim))negative_embeds: Gets embeddings for negative samples (shape:(batch_size, negative_samples, embedding_dim))
- Positive Score: Measures similarity between center and context words:
1 2
pos_score = torch.sum(center_embeds * context_embeds, dim=1) pos_score = torch.sigmoid(pos_score)
- Element-wise multiplication followed by sum computes the dot product (cosine similarity when embeddings are normalized)
- The sigmoid converts the dot product into a probability $p \in (0, 1)$
- Higher dot product → higher probability → model is confident these words appear together
- Negative Score: Measures similarity between center words and negative samples:
1 2
neg_score = torch.bmm(negative_embeds, center_embeds.unsqueeze(2)) neg_score = torch.sigmoid(neg_score).squeeze(2)
torch.bmmperforms batch matrix multiplication: for each sample in the batch, it computes dot products between the center embedding and all negative embeddingsunsqueeze(2)adds a dimension tocenter_embeds:(batch_size, embedding_dim)→(batch_size, embedding_dim, 1)to make it compatible with batch matrix multiplication- The matrix multiplication:
(batch_size, negative_samples, embedding_dim) @ (batch_size, embedding_dim, 1)=(batch_size, negative_samples, 1) - We
squeeze(2)to remove the last dimension, getting(batch_size, negative_samples) - Each value represents how similar the center word is to a negative sample (we want this to be low)
The Learning Objective
The model returns pos_score and neg_score, which will be used in the loss function:
This loss function:
- Maximizes
pos_score(probability that real context words appear with the center word) - Minimizes
neg_score(probability that random words appear with the center word)
By optimizing this objective, the model learns embeddings where:
- Words that appear together in text have high dot products (similar vectors)
- Words that don’t appear together have low dot products (dissimilar vectors)
Training the Word2Vec Model
Now in this section, we will train the Word2Vec model. We will use the Word2Vec class to train the model. The code is below followed by the explanation.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class Word2Vec:
def __init__(self, embedding_dim=128, window_size=5, negative_samples_counts=5, min_count=5, learning_rate=0.001, num_epochs=5):
self.embedding_dim = embedding_dim
self.window_size = window_size
self.negative_samples_counts = negative_samples_counts
self.min_count = min_count
self.learning_rate = learning_rate
self.num_epochs = num_epochs
self.word_to_idx = None
self.idx_to_word = None
self.dataset = None
self.model = None
self.optimizer = None
def _preprocess_text_and_build_vocab(self, text):
# Tokenize the text once
self.words = word_tokenize(text)
# Count words for vocabulary building and frequency calculations
word_counts = collections.Counter(self.words)
# Filter words that meet min_count, then assign contiguous indices 0, 1, 2, ...
# This ensures indices are in range [0, vocab_size-1]
words_meeting_min_count = [(word, count) for word, count in word_counts.items() if count >= self.min_count]
self.word_to_idx = {word: idx for idx, (word, count) in enumerate(words_meeting_min_count)}
# Build reverse mapping: {idx: word}
self.idx_to_word = {idx: word for word, idx in self.word_to_idx.items()}
# Compute word frequencies for subsampling and negative sampling
# Only compute frequencies for words in vocabulary (meets min_count)
total_count = len(self.words)
self.word_freqs = {}
for word, count in word_counts.items():
if word in self.word_to_idx: # Only include words in vocabulary
self.word_freqs[word] = count / total_count
print(f"Vocabulary size: {len(self.word_to_idx)}")
def _compute_loss(self, pos_score, neg_score):
# pos_score: (batch_size,)
# neg_score: (batch_size, negative_samples)
# Loss formula: -log(pos_score) - sum_{i=1}^k log(1 - neg_score_i)
pos_loss = -torch.log(pos_score + 1e-10).mean()
# Sum over negative_samples dimension first, then average over batch
neg_loss = -torch.log(1 - neg_score + 1e-10).sum(dim=1).mean()
return pos_loss + neg_loss
def train(self, text, batch_size=128):
self._preprocess_text_and_build_vocab(text)
# Pass preprocessed data to the dataset
# Dataset only handles training example generation, not text processing
self.dataset = Word2VecDataset(self.words, self.word_to_idx, self.word_freqs,
self.window_size, self.negative_samples_counts)
dataloader = DataLoader(self.dataset, batch_size=batch_size, shuffle=True)
self.model = SkipGramModel(len(self.word_to_idx), self.embedding_dim)
self.optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate)
print(f"Training for {self.num_epochs} epochs...")
for epoch in range(self.num_epochs):
epoch_loss = 0
# Create tqdm wrapper inside the loop for each epoch
tqdm_dataloader = tqdm(dataloader, total=len(dataloader), desc=f"Epoch {epoch+1}/{self.num_epochs}")
for idx, (target, context, negs) in enumerate(tqdm_dataloader):
self.optimizer.zero_grad()
pos_score, neg_score = self.model(target, context, negs)
loss = self._compute_loss(pos_score, neg_score)
loss.backward()
self.optimizer.step()
epoch_loss += loss.item()
if (idx + 1) % 100 == 0:
print(f"Epoch {epoch+1} Batch {idx+1} loss: {loss.item()}")
# checkpointing
torch.save({
"epoch": epoch,
"model_state_dict": self.model.state_dict(),
"optimizer_state_dict": self.optimizer.state_dict(),
"loss": loss.item()
}, f"data/checkpoint_{epoch+1}_{idx+1}.pth")
# print closest words to the center word
print(f"Closest words to the center word {self.idx_to_word[target[0].item()]}: {self.most_similar(self.idx_to_word[target[0].item()])}")
avg_loss = epoch_loss / len(dataloader)
print(f"Epoch {epoch+1} loss: {avg_loss}")
print("Training complete!")
def most_similar(self, word, top_k=10):
word_idx = self.word_to_idx[word]
embedding = self.model.get_embedding(word_idx)
all_embeddings = self.model.get_all_center_embeddings()
similarities = torch.matmul(embedding, all_embeddings.T) # (1, vocab_size)
similarities = similarities.squeeze(0) # (vocab_size,)
_, indices = torch.topk(similarities, top_k)
return [self.idx_to_word[idx.item()] for idx in indices]
def get_embedding(self, word):
word_idx = self.word_to_idx[word]
return self.model.get_embedding(word_idx).detach()
1
2
3
if __name__ == "__main__":
word2vec = Word2Vec(embedding_dim=128, window_size=5,
negative_samples_counts=5, min_count=5, learning_rate=0.001, num_epochs=2)
1
word2vec.train(text, batch_size=2048)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
Vocabulary size: 71286
Training for 2 epochs...
Epoch 1/2: 0%| | 99/34343 [01:33<2:15:28, 4.21it/s]
Epoch 1 Batch 100 loss: 3.774440050125122
Epoch 1/2: 0%| | 100/34343 [01:34<3:06:45, 3.06it/s]
Closest words to the center word stones: ['the', 'of', 'and', 'in', 'a', 'to', 'as', 'by', 'that', 'at']
Epoch 1/2: 1%| | 199/34343 [03:11<38:21:02, 4.04s/it]
Epoch 1 Batch 200 loss: 3.144181489944458
Epoch 1/2: 1%| | 200/34343 [03:12<28:15:59, 2.98s/it]
Closest words to the center word through: ['the', 'in', 'a', 'of', 'zero', 'on', 'at', 'and', 'first', 'is']
Epoch 1/2: 1%| | 299/34343 [04:30<5:17:29, 1.79it/s]
Epoch 1 Batch 300 loss: 2.9165852069854736
Epoch 1/2: 1%| | 300/34343 [04:31<5:19:34, 1.78it/s]
Closest words to the center word that: ['part', 'number', 'time', 'used', 'be', 'same', 'state', 'use', 'such', 'known']
Epoch 1/2: 1%| | 399/34343 [05:48<2:37:18, 3.60it/s]
Epoch 1 Batch 400 loss: 2.7336912155151367
Epoch 1/2: 1%| | 400/34343 [05:48<3:10:16, 2.97it/s]
Closest words to the center word president: ['nine', 'eight', 'seven', 'zero', 'six', 'one', 'four', 'five', 'two', 'three']
Epoch 1/2: 1%|▏ | 500/34343 [06:59<2:40:33, 3.51it/s]
Epoch 1 Batch 500 loss: 2.6643283367156982
Closest words to the center word special: ['eight', 'nine', 'four', 'seven', 'case', 'zero', 'name', 'republic', 'isbn', 'referred']
Epoch 1/2: 2%|▏ | 599/34343 [08:10<18:33:53, 1.98s/it]
Epoch 1 Batch 600 loss: 2.6351046562194824
Epoch 1/2: 2%|▏ | 600/34343 [08:11<14:17:31, 1.52s/it]
Closest words to the center word zero: ['isbn', 'eight', 'seven', 'nine', 'zero', 'six', 'four', 'five', 'one', 'three']
Epoch 1/2: 2%|▏ | 699/34343 [09:21<3:55:13, 2.38it/s]
Epoch 1 Batch 700 loss: 2.578791856765747
Epoch 1/2: 2%|▏ | 700/34343 [09:22<4:28:48, 2.09it/s]
Closest words to the center word dharma: ['isbn', 'nine', 'eight', 'six', 'zero', 'seven', 'creation', 'four', 'july', 'one']
Epoch 1/2: 2%|▏ | 799/34343 [10:30<2:06:13, 4.43it/s]
Epoch 1 Batch 800 loss: 2.5281713008880615
Epoch 1/2: 2%|▏ | 800/34343 [10:30<3:08:00, 2.97it/s]
Closest words to the center word victor: ['isbn', 'nine', 'seven', 'zero', 'eight', 'six', 'births', 'three', 'km', 'four']
Epoch 1/2: 3%|▎ | 899/34343 [11:28<1:57:59, 4.72it/s]
Epoch 1 Batch 900 loss: 2.517162799835205
Epoch 1/2: 3%|▎ | 900/34343 [11:29<3:03:03, 3.04it/s]
Closest words to the center word radiation: ['isbn', 'nine', 'seven', 'births', 'ability', 'rest', 'six', 'result', 'zero', 'eight']
Epoch 1/2: 3%|▎ | 999/34343 [12:52<16:58:02, 1.83s/it]
Epoch 1 Batch 1000 loss: 2.5241129398345947
Epoch 1/2: 3%|▎ | 1000/34343 [12:52<13:35:01, 1.47s/it]
Closest words to the center word precocious: ['isbn', 'nine', 'zero', 'km', 'seven', 'june', 'december', 'births', 'eight', 'july']
Epoch 1/2: 3%|▎ | 1099/34343 [13:57<2:48:34, 3.29it/s]
Epoch 1 Batch 1100 loss: 2.4730119705200195
Epoch 1/2: 3%|▎ | 1100/34343 [13:58<3:36:10, 2.56it/s]
Closest words to the center word a: ['isbn', 'not', 'zero', 'births', 'december', 'refer', 'referred', 'nine', 'used', 'be']
Epoch 1/2: 3%|▎ | 1199/34343 [15:00<2:00:17, 4.59it/s]
Epoch 1 Batch 1200 loss: 2.4821088314056396
Epoch 1/2: 3%|▎ | 1200/34343 [15:00<3:06:05, 2.97it/s]
Closest words to the center word justice: ['isbn', 'births', 'september', 'nine', 'eight', 'december', 'km', 'zero', 'june', 'july']
Epoch 1/2: 4%|▍ | 1299/34343 [16:03<1:55:52, 4.75it/s]
Epoch 1 Batch 1300 loss: 2.4716808795928955
Epoch 1/2: 4%|▍ | 1300/34343 [16:04<3:02:40, 3.01it/s]
Closest words to the center word least: ['isbn', 'births', 'december', 'june', 'km', 'january', 'july', 'november', 'zero', 'september']
Epoch 1/2: 4%|▍ | 1399/34343 [17:11<6:05:14, 1.50it/s]
Epoch 1 Batch 1400 loss: 2.4694762229919434
Epoch 1/2: 4%|▍ | 1400/34343 [17:12<6:05:56, 1.50it/s]
Closest words to the center word gettier: ['isbn', 'births', 'december', 'nine', 'km', 'july', 'eight', 'january', 'seven', 'six']
Epoch 1/2: 4%|▍ | 1499/34343 [18:19<2:48:39, 3.25it/s]
Epoch 1 Batch 1500 loss: 2.460878849029541
Epoch 1/2: 4%|▍ | 1500/34343 [18:19<3:38:57, 2.50it/s]
Closest words to the center word music: ['isbn', 'births', 'importance', 'km', 'november', 'february', 'july', 'pp', 'eight', 'basis']
Epoch 1/2: 5%|▍ | 1599/34343 [19:22<1:59:59, 4.55it/s]
Epoch 1 Batch 1600 loss: 2.453460931777954
Epoch 1/2: 5%|▍ | 1600/34343 [19:22<3:04:47, 2.95it/s]
Closest words to the center word popular: ['referred', 'births', 'isbn', 'true', 'believed', 'rest', 'importance', 'idea', 'result', 'absence']
Epoch 1/2: 5%|▍ | 1699/34343 [20:20<1:59:22, 4.56it/s]
Epoch 1 Batch 1700 loss: 2.4053971767425537
Epoch 1/2: 5%|▍ | 1700/34343 [20:31<31:43:42, 3.50s/it]
Closest words to the center word old: ['births', 'isbn', 'km', 'january', 'november', 'zero', 'june', 'eight', 'pp', 'th']
Epoch 1/2: 5%|▌ | 1799/34343 [21:30<4:53:54, 1.85it/s]
Epoch 1 Batch 1800 loss: 2.4356462955474854
Epoch 1/2: 5%|▌ | 1800/34343 [21:31<5:09:49, 1.75it/s]
Closest words to the center word in: ['births', 'isbn', 'pp', 'february', 'november', 'inducted', 'june', 'eight', 'km', 'nine']
Epoch 1/2: 6%|▌ | 1899/34343 [22:38<1:57:59, 4.58it/s]
Epoch 1 Batch 1900 loss: 2.4106228351593018
Epoch 1/2: 6%|▌ | 1900/34343 [22:38<3:03:19, 2.95it/s]
Closest words to the center word bradley: ['births', 'isbn', 'pp', 'km', 'nine', 'february', 'november', 'laureate', 'inducted', 'eight']
Epoch 1/2: 6%|▌ | 1999/34343 [23:47<1:55:14, 4.68it/s]
Epoch 1 Batch 2000 loss: 2.4157354831695557
Epoch 1/2: 6%|▌ | 2000/34343 [23:48<2:59:00, 3.01it/s]
Closest words to the center word fermentation: ['births', 'isbn', 'pp', 'qur', 'referred', 'importance', 'rest', 'refer', 'difficult', 'easier']
Epoch 1/2: 6%|▌ | 2099/34343 [25:11<30:41:01, 3.43s/it]
Epoch 1 Batch 2100 loss: 2.407923698425293
Epoch 1/2: 6%|▌ | 2100/34343 [25:12<23:08:32, 2.58s/it]
Closest words to the center word doing: ['able', 'believed', 'know', 'referred', 'expected', 'want', 'do', 'seen', 'necessary', 'difficult']
Epoch 1/2: 6%|▋ | 2199/34343 [26:20<2:31:25, 3.54it/s]
Epoch 1 Batch 2200 loss: 2.4096288681030273
Epoch 1/2: 6%|▋ | 2200/34343 [26:20<3:25:12, 2.61it/s]
Closest words to the center word may: ['may', 'births', 'can', 'inducted', 'there', 'must', 'would', 'than', 'pp', 'isbn']
Epoch 1/2: 7%|▋ | 2299/34343 [27:29<2:08:58, 4.14it/s]
Epoch 1 Batch 2300 loss: 2.3787875175476074
Epoch 1/2: 7%|▋ | 2300/34343 [27:30<3:14:13, 2.75it/s]
Closest words to the center word outside: ['qur', 'rest', 'origin', 'importance', 'happens', 'prepare', 'variety', 'idea', 'collapse', 'consequence']
Epoch 1/2: 7%|▋ | 2399/34343 [28:38<1:53:21, 4.70it/s]
Epoch 1 Batch 2400 loss: 2.392396926879883
Epoch 1/2: 7%|▋ | 2400/34343 [28:38<2:52:15, 3.09it/s]
Closest words to the center word added: ['believed', 'able', 'referred', 'inducted', 'fact', 'difficult', 'rest', 'possible', 'stored', 'know']
Epoch 1/2: 7%|▋ | 2499/34343 [29:53<6:49:19, 1.30it/s]
Epoch 1 Batch 2500 loss: 2.417815685272217
Epoch 1/2: 7%|▋ | 2500/34343 [29:53<6:20:36, 1.39it/s]
Closest words to the center word private: ['difficult', 'referred', 'stored', 'remove', 'beings', 'able', 'quantity', 'regard', 'violation', 'sizes']
Epoch 1/2: 8%|▊ | 2599/34343 [31:01<2:18:07, 3.83it/s]
Epoch 1 Batch 2600 loss: 2.3879668712615967
Epoch 1/2: 8%|▊ | 2600/34343 [31:02<3:13:45, 2.73it/s]
Closest words to the center word estate: ['births', 'isbn', 'inducted', 'pp', 'th', 'december', 'june', 'km', 'nine', 'january']
Epoch 1/2: 8%|▊ | 2699/34343 [32:11<1:54:11, 4.62it/s]
Epoch 1 Batch 2700 loss: 2.4030895233154297
Epoch 1/2: 8%|▊ | 2700/34343 [32:11<2:55:18, 3.01it/s]
Closest words to the center word helmets: ['isbn', 'births', 'inducted', 'pp', 'km', 'pmid', 'laureate', 'july', 'agave', 'rfc']
Epoch 1/2: 8%|▊ | 2799/34343 [33:34<43:04:08, 4.92s/it]
Epoch 1 Batch 2800 loss: 2.378714084625244
Epoch 1/2: 8%|▊ | 2800/34343 [33:34<31:51:41, 3.64s/it]
Closest words to the center word computation: ['know', 'determine', 'does', 'stored', 'referred', 'difficult', 'argue', 'reason', 'believe', 'belief']
Epoch 1/2: 8%|▊ | 2899/34343 [34:30<3:25:10, 2.55it/s]
Epoch 1 Batch 2900 loss: 2.374361276626587
Epoch 1/2: 8%|▊ | 2900/34343 [34:31<4:04:08, 2.15it/s]
Closest words to the center word mostly: ['births', 'fact', 'inducted', 'isbn', 'pp', 'referred', 'considered', 'treated', 'argue', 'understood']
Epoch 1/2: 9%|▊ | 2999/34343 [35:16<2:00:09, 4.35it/s]
Epoch 1 Batch 3000 loss: 2.3956961631774902
Epoch 1/2: 9%|▊ | 3000/34343 [35:16<3:06:41, 2.80it/s]
Closest words to the center word relationship: ['lack', 'distinguish', 'suited', 'fact', 'belief', 'treated', 'regard', 'stored', 'easy', 'kind']
Epoch 1/2: 9%|▉ | 3099/34343 [36:00<1:51:54, 4.65it/s]
Epoch 1 Batch 3100 loss: 2.348349094390869
Epoch 1/2: 9%|▉ | 3100/34343 [36:01<3:00:04, 2.89it/s]
Closest words to the center word absent: ['births', 'inducted', 'isbn', 'years', 'december', 'pp', 'gwh', 'know', 'expected', 'september']
Epoch 1/2: 9%|▉ | 3199/34343 [37:16<30:25:10, 3.52s/it]
Epoch 1 Batch 3200 loss: 2.376477003097534
Epoch 1/2: 9%|▉ | 3200/34343 [37:17<22:53:02, 2.65s/it]
Closest words to the center word kahn: ['laureate', 'births', 'isbn', 'inducted', 'pp', 'gwh', 'pmid', 'nobel', 'actress', 'nine']
Epoch 1/2: 10%|▉ | 3299/34343 [38:26<4:09:28, 2.07it/s]
Epoch 1 Batch 3300 loss: 2.341855764389038
Epoch 1/2: 10%|▉ | 3300/34343 [38:26<4:33:14, 1.89it/s]
Closest words to the center word lit: ['frac', 'laureate', 'mathbf', 'x', 'y', 'births', 'isbn', 'inducted', 'you', 'f']
Epoch 1/2: 10%|▉ | 3399/34343 [39:36<1:57:18, 4.40it/s]
Epoch 1 Batch 3400 loss: 2.33795166015625
Epoch 1/2: 10%|▉ | 3400/34343 [39:36<2:58:23, 2.89it/s]
Closest words to the center word switched: ['births', 'laureate', 'inducted', 'isbn', 'able', 'pmid', 'remove', 'january', 'february', 'know']
Epoch 1/2: 10%|█ | 3499/34343 [40:45<1:49:59, 4.67it/s]
Epoch 1 Batch 3500 loss: 2.36179780960083
Epoch 1/2: 10%|█ | 3500/34343 [40:45<2:49:20, 3.04it/s]
Closest words to the center word makes: ['know', 'difficult', 'does', 'must', 'can', 'should', 'want', 'need', 'you', 'might']
Epoch 1/2: 10%|█ | 3599/34343 [42:09<21:06:08, 2.47s/it]
Epoch 1 Batch 3600 loss: 2.352299690246582
Epoch 1/2: 10%|█ | 3600/34343 [42:10<16:24:09, 1.92s/it]
Closest words to the center word with: ['inducted', 'births', 'isbn', 'pmid', 'gwh', 'had', 'will', 'into', 'explain', 'than']
Epoch 1/2: 11%|█ | 3699/34343 [43:19<3:12:54, 2.65it/s]
Epoch 1 Batch 3700 loss: 2.3344993591308594
Epoch 1/2: 11%|█ | 3700/34343 [43:20<3:48:33, 2.23it/s]
Closest words to the center word frankie: ['births', 'laureate', 'inducted', 'isbn', 'gwh', 'pmid', 'frac', 'sep', 'pp', 'oct']
Epoch 1/2: 11%|█ | 3799/34343 [44:28<1:51:11, 4.58it/s]
Epoch 1 Batch 3800 loss: 2.371368408203125
Epoch 1/2: 11%|█ | 3800/34343 [44:28<2:48:44, 3.02it/s]
Closest words to the center word eight: ['births', 'laureate', 'isbn', 'inducted', 'gwh', 'pmid', 'sep', 'nine', 'pp', 'seven']
Epoch 1/2: 11%|█▏ | 3899/34343 [45:26<1:47:46, 4.71it/s]
Epoch 1 Batch 3900 loss: 2.3470311164855957
Epoch 1/2: 11%|█▏ | 3900/34343 [45:26<2:48:37, 3.01it/s]
Closest words to the center word ratification: ['inducted', 'births', 'pmid', 'midst', 'gregorian', 'laureate', 'united', 'republic', 'february', 'gwh']
Epoch 1/2: 12%|█▏ | 3999/34343 [46:48<11:21:33, 1.35s/it]
Epoch 1 Batch 4000 loss: 2.332225799560547
Epoch 1/2: 12%|█▏ | 4000/34343 [46:49<9:31:30, 1.13s/it]
Closest words to the center word ends: ['inducted', 'pmid', 'births', 'years', 'gwh', 'isbn', 'june', 'february', 'ft', 'sep']
Epoch 1/2: 12%|█▏ | 4099/34343 [47:58<2:22:11, 3.54it/s]
Epoch 1 Batch 4100 loss: 2.3461973667144775
Epoch 1/2: 12%|█▏ | 4100/34343 [47:58<3:15:17, 2.58it/s]
Closest words to the center word modern: ['spoken', 'languages', 'eastern', 'countries', 'areas', 'european', 'europe', 'nations', 'context', 'western']
Epoch 1/2: 12%|█▏ | 4199/34343 [49:05<1:46:33, 4.71it/s]
Epoch 1 Batch 4200 loss: 2.3501133918762207
Epoch 1/2: 12%|█▏ | 4200/34343 [49:06<2:45:06, 3.04it/s]
Closest words to the center word nine: ['births', 'inducted', 'laureate', 'gwh', 'isbn', 'pmid', 'sep', 'nine', 'pp', 'oct']
Epoch 1/2: 13%|█▎ | 4299/34343 [50:14<1:45:16, 4.76it/s]
Epoch 1 Batch 4300 loss: 2.3361902236938477
Epoch 1/2: 13%|█▎ | 4300/34343 [50:15<2:46:05, 3.01it/s]
Closest words to the center word for: ['for', 'frac', 'than', 'if', 'own', 'likely', 'there', 'during', 'ago', 'term']
Epoch 1/2: 13%|█▎ | 4399/34343 [51:39<6:07:27, 1.36it/s]
Epoch 1 Batch 4400 loss: 2.3040339946746826
Epoch 1/2: 13%|█▎ | 4400/34343 [51:40<5:52:04, 1.42it/s]
Closest words to the center word three: ['births', 'inducted', 'gwh', 'isbn', 'pmid', 'sep', 'unpaved', 'laureate', 'sq', 'est']
Epoch 1/2: 13%|█▎ | 4499/34343 [52:49<1:50:00, 4.52it/s]
Epoch 1 Batch 4500 loss: 2.3336434364318848
Epoch 1/2: 13%|█▎ | 4500/34343 [52:49<2:52:41, 2.88it/s]
Closest words to the center word shutout: ['gwh', 'births', 'inducted', 'laureate', 'isbn', 'pmid', 'sep', 'unpaved', 'pp', 'oct']
Epoch 1/2: 13%|█▎ | 4599/34343 [53:58<1:47:07, 4.63it/s]
Epoch 1 Batch 4600 loss: 2.305166482925415
Epoch 1/2: 13%|█▎ | 4600/34343 [53:59<2:56:24, 2.81it/s]
Closest words to the center word episode: ['inducted', 'gregorian', 'pmid', 'years', 'gwh', 'sep', 'january', 'february', 'june', 'laureate']
Epoch 1/2: 14%|█▎ | 4699/34343 [55:22<39:56:33, 4.85s/it]
Epoch 1 Batch 4700 loss: 2.291905403137207
Epoch 1/2: 14%|█▎ | 4700/34343 [55:23<29:29:32, 3.58s/it]
Closest words to the center word have: ['have', 'has', 'had', 'be', 'are', 'know', 'argue', 'been', 'were', 'want']
Epoch 1/2: 14%|█▍ | 4799/34343 [56:31<2:32:50, 3.22it/s]
Epoch 1 Batch 4800 loss: 2.3587260246276855
Epoch 1/2: 14%|█▍ | 4800/34343 [56:32<3:19:07, 2.47it/s]
Closest words to the center word disk: ['mathbf', 'frac', 'insubstantial', 'x', 'mbox', 'cdot', 'import', 'function', 'disk', 'file']
Epoch 1/2: 14%|█▍ | 4899/34343 [57:39<1:52:51, 4.35it/s]
Epoch 1 Batch 4900 loss: 2.3159313201904297
Epoch 1/2: 14%|█▍ | 4900/34343 [57:39<2:52:15, 2.85it/s]
Closest words to the center word years: ['years', 'gregorian', 'leap', 'million', 'ago', 'year', 'days', 'hours', 'months', 'minutes']
Epoch 1/2: 15%|█▍ | 4999/34343 [58:46<1:43:51, 4.71it/s]
Epoch 1 Batch 5000 loss: 2.2998197078704834
Epoch 1/2: 15%|█▍ | 5000/34343 [58:47<2:45:45, 2.95it/s]
Closest words to the center word the: ['the', 'states', 'this', 'its', 'kingdom', 'united', 'war', 'th', 'nations', 'a']
Epoch 1/2: 15%|█▍ | 5099/34343 [1:00:10<8:10:56, 1.01s/it]
Epoch 1 Batch 5100 loss: 2.3164725303649902
Epoch 1/2: 15%|█▍ | 5100/34343 [1:00:11<7:21:15, 1.10it/s]
Closest words to the center word that: ['that', 'not', 'we', 'know', 'what', 'necessarily', 'you', 'why', 'if', 'never']
Epoch 1/2: 15%|█▌ | 5199/34343 [1:01:20<2:16:53, 3.55it/s]
Epoch 1 Batch 5200 loss: 2.3047921657562256
Epoch 1/2: 15%|█▌ | 5200/34343 [1:01:21<3:05:59, 2.61it/s]
Closest words to the center word theories: ['argue', 'materials', 'practices', 'properties', 'topics', 'aspects', 'particles', 'beings', 'knowledge', 'types']
Epoch 1/2: 15%|█▌ | 5299/34343 [1:02:30<1:45:58, 4.57it/s]
Epoch 1 Batch 5300 loss: 2.3116066455841064
Epoch 1/2: 15%|█▌ | 5300/34343 [1:02:30<2:45:16, 2.93it/s]
Closest words to the center word book: ['book', 'wife', 'pmid', 'son', 'laureate', 'gwh', 'frac', 'inducted', 'father', 'feb']
Epoch 1/2: 16%|█▌ | 5399/34343 [1:03:39<1:43:14, 4.67it/s]
Epoch 1 Batch 5400 loss: 2.2891645431518555
Epoch 1/2: 16%|█▌ | 5400/34343 [1:03:56<40:44:25, 5.07s/it]
Closest words to the center word owned: ['gwh', 'pmid', 'sep', 'elected', 'united', 'asia', 'east', 'union', 'afc', 'territories']
Epoch 1/2: 16%|█▌ | 5499/34343 [1:05:04<6:11:32, 1.29it/s]
Epoch 1 Batch 5500 loss: 2.292771577835083
Epoch 1/2: 16%|█▌ | 5500/34343 [1:05:05<5:45:38, 1.39it/s]
Closest words to the center word real: ['frac', 'mathbf', 'x', 'finite', 'cdot', 'phi', 'sum', 'y', 'mathrm', 'rangle']
Epoch 1/2: 16%|█▋ | 5599/34343 [1:06:13<2:01:59, 3.93it/s]
Epoch 1 Batch 5600 loss: 2.282719135284424
Epoch 1/2: 16%|█▋ | 5600/34343 [1:06:13<2:51:15, 2.80it/s]
Closest words to the center word cgi: ['mathbf', 'frac', 'mbox', 'cdot', 'algebra', 'http', 'laureate', 'www', 'linear', 'programming']
Epoch 1/2: 17%|█▋ | 5699/34343 [1:07:23<1:43:02, 4.63it/s]
Epoch 1 Batch 5700 loss: 2.2954509258270264
Epoch 1/2: 17%|█▋ | 5700/34343 [1:07:24<2:52:42, 2.76it/s]
Closest words to the center word blues: ['laureate', 'pmid', 'actress', 'actor', 'gwh', 'inducted', 'births', 'comedian', 'physicist', 'musician']
Epoch 1/2: 17%|█▋ | 5799/34343 [1:08:47<38:01:39, 4.80s/it]
Epoch 1 Batch 5800 loss: 2.3222241401672363
Epoch 1/2: 17%|█▋ | 5800/34343 [1:08:48<28:04:33, 3.54s/it]
Closest words to the center word escape: ['bring', 'return', 'returned', 'throne', 'decided', 'want', 'keep', 'able', 'him', 'refused']
Epoch 1/2: 17%|█▋ | 5899/34343 [1:09:56<4:51:39, 1.63it/s]
Epoch 1 Batch 5900 loss: 2.214003324508667
Epoch 1/2: 17%|█▋ | 5900/34343 [1:09:57<4:51:12, 1.63it/s]
Closest words to the center word ions: ['mathbf', 'frac', 'molecules', 'acids', 'carbon', 'finite', 'algebra', 'dioxide', 'properties', 'linear']
Epoch 1/2: 17%|█▋ | 5999/34343 [1:10:53<1:50:19, 4.28it/s]
Epoch 1 Batch 6000 loss: 2.3203701972961426
Epoch 1/2: 17%|█▋ | 6000/34343 [1:10:54<2:45:13, 2.86it/s]
Closest words to the center word water: ['est', 'km', 'water', 'carbon', 'dioxide', 'capita', 'energy', 'molecules', 'gwh', 'temperature']
Epoch 1/2: 18%|█▊ | 6099/34343 [1:12:02<1:40:58, 4.66it/s]
Epoch 1 Batch 6100 loss: 2.3139994144439697
Epoch 1/2: 18%|█▊ | 6100/34343 [1:12:03<2:42:57, 2.89it/s]
Closest words to the center word lm: ['gwh', 'pmid', 'frac', 'mathbf', 'grt', 'inducted', 'cdot', 'mbox', 'cdots', 'unpaved']
Epoch 1/2: 18%|█▊ | 6199/34343 [1:13:22<28:33:27, 3.65s/it]
Epoch 1 Batch 6200 loss: 2.263488531112671
Epoch 1/2: 18%|█▊ | 6200/34343 [1:13:23<21:26:26, 2.74s/it]
Closest words to the center word town: ['nfc', 'gregorian', 'city', 'town', 'wales', 'south', 'located', 'york', 'county', 'afc']
Epoch 1/2: 18%|█▊ | 6299/34343 [1:14:32<3:08:11, 2.48it/s]
Epoch 1 Batch 6300 loss: 2.2832627296447754
Epoch 1/2: 18%|█▊ | 6300/34343 [1:14:32<4:03:19, 1.92it/s]
Closest words to the center word west: ['nfc', 'east', 'south', 'west', 'north', 'afc', 'ocean', 'coast', 'southeast', 'atlantic']
Epoch 1/2: 19%|█▊ | 6399/34343 [1:15:37<1:43:55, 4.48it/s]
Epoch 1 Batch 6400 loss: 2.263874053955078
Epoch 1/2: 19%|█▊ | 6400/34343 [1:15:38<2:34:04, 3.02it/s]
Closest words to the center word his: ['his', 'her', 'him', 'brother', 'wife', 'my', 'father', 'she', 'son', 'shortly']
Epoch 1/2: 19%|█▉ | 6499/34343 [1:16:45<1:37:36, 4.75it/s]
Epoch 1 Batch 6500 loss: 2.2927496433258057
Epoch 1/2: 19%|█▉ | 6500/34343 [1:16:45<2:33:43, 3.02it/s]
Closest words to the center word seven: ['gwh', 'pmid', 'births', 'inducted', 'kwh', 'sep', 'isbn', 'feb', 'laureate', 'jul']
Epoch 1/2: 19%|█▉ | 6599/34343 [1:18:10<14:51:21, 1.93s/it]
Epoch 1 Batch 6600 loss: 2.261687994003296
Epoch 1/2: 19%|█▉ | 6600/34343 [1:18:11<11:51:08, 1.54s/it]
Closest words to the center word renamed: ['pmid', 'inducted', 'gwh', 'sep', 'afc', 'nfc', 'nfl', 'gregorian', 'feb', 'jul']
Epoch 1/2: 20%|█▉ | 6699/34343 [1:19:21<2:23:05, 3.22it/s]
Epoch 1 Batch 6700 loss: 2.2591235637664795
Epoch 1/2: 20%|█▉ | 6700/34343 [1:19:22<3:03:21, 2.51it/s]
Closest words to the center word greek: ['roman', 'greek', 'orthodox', 'ancient', 'catholic', 'mythology', 'century', 'spoken', 'indo', 'eastern']
Epoch 1/2: 20%|█▉ | 6799/34343 [1:20:30<1:39:12, 4.63it/s]
Epoch 1 Batch 6800 loss: 2.2623863220214844
Epoch 1/2: 20%|█▉ | 6800/34343 [1:20:30<2:33:05, 3.00it/s]
Closest words to the center word than: ['than', 'much', 'less', 'est', 'expensive', 'efficient', 'gwh', 'faster', 'km', 'rate']
Epoch 1/2: 20%|██ | 6899/34343 [1:21:39<1:37:05, 4.71it/s]
Epoch 1 Batch 6900 loss: 2.270664691925049
Epoch 1/2: 20%|██ | 6900/34343 [1:21:40<2:32:36, 3.00it/s]
Closest words to the center word easier: ['easier', 'difficult', 'enough', 'prove', 'anything', 'sure', 'necessary', 'understand', 'impossible', 'interact']
Epoch 1/2: 20%|██ | 6999/34343 [1:23:04<7:41:38, 1.01s/it]
Epoch 1 Batch 7000 loss: 2.2632012367248535
Epoch 1/2: 20%|██ | 7000/34343 [1:23:05<6:48:42, 1.12it/s]
Closest words to the center word flying: ['gwh', 'pmid', 'cdot', 'frac', 'inducted', 'cdots', 'jul', 'mbox', 'grt', 'unpaved']
Epoch 1/2: 21%|██ | 7099/34343 [1:24:13<1:44:05, 4.36it/s]
Epoch 1 Batch 7100 loss: 2.292957305908203
Epoch 1/2: 21%|██ | 7100/34343 [1:24:14<2:33:31, 2.96it/s]
Closest words to the center word solemnly: ['distinguish', 'necessarily', 'know', 'prove', 'understood', 'perceive', 'verify', 'beings', 'believe', 'understand']
Epoch 1/2: 21%|██ | 7199/34343 [1:25:21<1:36:40, 4.68it/s]
Epoch 1 Batch 7200 loss: 2.2485849857330322
Epoch 1/2: 21%|██ | 7200/34343 [1:25:22<2:32:12, 2.97it/s]
Closest words to the center word discovered: ['inducted', 'gregorian', 'published', 'discovered', 'pmid', 'century', 'superseded', 'believed', 'leap', 'buried']
Epoch 1/2: 21%|██▏ | 7299/34343 [1:26:31<1:39:22, 4.54it/s]
Epoch 1 Batch 7300 loss: 2.3111839294433594
Epoch 1/2: 21%|██▏ | 7300/34343 [1:26:47<37:32:27, 5.00s/it]
Closest words to the center word his: ['his', 'her', 'him', 'brother', 'my', 'wife', 'eldest', 'jesus', 'she', 'father']
Epoch 1/2: 22%|██▏ | 7399/34343 [1:27:57<2:35:28, 2.89it/s]
Epoch 1 Batch 7400 loss: 2.267235279083252
Epoch 1/2: 22%|██▏ | 7400/34343 [1:27:57<3:10:57, 2.35it/s]
Closest words to the center word principia: ['laureate', 'cdots', 'gwh', 'frac', 'cdot', 'mathbf', 'isbn', 'mbox', 'pmid', 'mathrm']
Epoch 1/2: 22%|██▏ | 7499/34343 [1:29:06<1:39:41, 4.49it/s]
Epoch 1 Batch 7500 loss: 2.2627291679382324
Epoch 1/2: 22%|██▏ | 7500/34343 [1:29:06<2:30:43, 2.97it/s]
Closest words to the center word object: ['subset', 'vector', 'mathbf', 'finite', 'algebra', 'euclidean', 'integer', 'topological', 'function', 'boolean']
Epoch 1/2: 22%|██▏ | 7599/34343 [1:30:14<1:34:52, 4.70it/s]
Epoch 1 Batch 7600 loss: 2.241898536682129
Epoch 1/2: 22%|██▏ | 7600/34343 [1:30:15<2:27:03, 3.03it/s]
Closest words to the center word aesthetic: ['cognitive', 'processes', 'topics', 'disorders', 'genetic', 'behaviors', 'computational', 'cognition', 'ethical', 'aspects']
Epoch 1/2: 22%|██▏ | 7699/34343 [1:31:41<10:01:32, 1.35s/it]
Epoch 1 Batch 7700 loss: 2.234434127807617
Epoch 1/2: 22%|██▏ | 7700/34343 [1:31:41<8:23:50, 1.13s/it]
Closest words to the center word battleship: ['gwh', 'pmid', 'nfc', 'afc', 'gregorian', 'capita', 'median', 'cyg', 'championship', 'grt']
Epoch 1/2: 23%|██▎ | 7799/34343 [1:32:52<2:18:28, 3.19it/s]
Epoch 1 Batch 7800 loss: 2.2651569843292236
Epoch 1/2: 23%|██▎ | 7800/34343 [1:32:53<2:57:01, 2.50it/s]
Closest words to the center word george: ['laureate', 'politician', 'physicist', 'cricketer', 'ois', 'footballer', 'jr', 'actress', 'pmid', 'earl']
Epoch 1/2: 23%|██▎ | 7899/34343 [1:34:01<1:37:20, 4.53it/s]
Epoch 1 Batch 7900 loss: 2.230804443359375
Epoch 1/2: 23%|██▎ | 7900/34343 [1:34:01<2:31:54, 2.90it/s]
Closest words to the center word occasionally: ['understood', 'difficult', 'interpreted', 'easier', 'interact', 'willing', 'treat', 'understand', 'verify', 'durable']
Epoch 1/2: 23%|██▎ | 7999/34343 [1:35:12<1:36:30, 4.55it/s]
Epoch 1 Batch 8000 loss: 2.285022258758545
Epoch 1/2: 23%|██▎ | 8000/34343 [1:35:12<2:30:09, 2.92it/s]
Closest words to the center word english: ['english', 'laureate', 'nobel', 'physicist', 'prize', 'languages', 'language', 'spoken', 'footballer', 'french']
Epoch 1/2: 24%|██▎ | 8099/34343 [1:36:37<7:26:38, 1.02s/it]
Epoch 1 Batch 8100 loss: 2.292471408843994
Epoch 1/2: 24%|██▎ | 8100/34343 [1:36:38<6:28:18, 1.13it/s]
Closest words to the center word western: ['eastern', 'asia', 'caribbean', 'western', 'nfc', 'southeast', 'populous', 'bordering', 'south', 'africa']
Epoch 1/2: 24%|██▍ | 8199/34343 [1:37:49<2:03:11, 3.54it/s]
Epoch 1 Batch 8200 loss: 2.2767786979675293
Epoch 1/2: 24%|██▍ | 8200/34343 [1:37:49<2:48:22, 2.59it/s]
Closest words to the center word united: ['united', 'federated', 'states', 'nfc', 'senate', 'republic', 'commonwealth', 'canada', 'nations', 'micronesia']
Epoch 1/2: 24%|██▍ | 8299/34343 [1:39:00<1:33:34, 4.64it/s]
Epoch 1 Batch 8300 loss: 2.2504992485046387
Epoch 1/2: 24%|██▍ | 8300/34343 [1:39:00<2:27:19, 2.95it/s]
Closest words to the center word commonly: ['commonly', 'widely', 'referred', 'spoken', 'regarded', 'used', 'understood', 'compounds', 'sometimes', 'often']
Epoch 1/2: 24%|██▍ | 8399/34343 [1:40:10<1:32:05, 4.69it/s]
Epoch 1 Batch 8400 loss: 2.262690544128418
Epoch 1/2: 24%|██▍ | 8400/34343 [1:40:27<37:48:40, 5.25s/it]
Closest words to the center word series: ['series', 'game', 'television', 'animated', 'video', 'episode', 'fantasy', 'games', 'cdots', 'album']
Epoch 1/2: 25%|██▍ | 8499/34343 [1:41:37<5:26:37, 1.32it/s]
Epoch 1 Batch 8500 loss: 2.2831146717071533
Epoch 1/2: 25%|██▍ | 8500/34343 [1:41:37<5:09:21, 1.39it/s]
Closest words to the center word network: ['intelsat', 'gwh', 'internet', 'software', 'directory', 'isps', 'gnu', 'computer', 'protocol', 'server']
Epoch 1/2: 25%|██▌ | 8599/34343 [1:42:46<1:44:06, 4.12it/s]
Epoch 1 Batch 8600 loss: 2.2123119831085205
Epoch 1/2: 25%|██▌ | 8600/34343 [1:42:47<2:34:09, 2.78it/s]
Closest words to the center word those: ['those', 'denominations', 'themselves', 'individuals', 'kinds', 'christians', 'citizens', 'muslims', 'births', 'speakers']
Epoch 1/2: 25%|██▌ | 8699/34343 [1:44:00<1:31:31, 4.67it/s]
Epoch 1 Batch 8700 loss: 2.2346959114074707
Epoch 1/2: 25%|██▌ | 8700/34343 [1:44:00<2:25:05, 2.95it/s]
Closest words to the center word catalogue: ['gwh', 'pmid', 'cyg', 'twh', 'laureate', 'jul', 'jun', 'oct', 'kwh', 'runways']
Epoch 1/2: 26%|██▌ | 8799/34343 [1:45:25<37:38:29, 5.30s/it]
Epoch 1 Batch 8800 loss: 2.221660852432251
Epoch 1/2: 26%|██▌ | 8800/34343 [1:45:26<27:53:43, 3.93s/it]
Closest words to the center word or: ['than', 'or', 'molecules', 'frac', 'amino', 'mathbf', 'membrane', 'atoms', 'dioxide', 'lossy']
Epoch 1/2: 26%|██▌ | 8899/34343 [1:46:35<3:24:55, 2.07it/s]
Epoch 1 Batch 8900 loss: 2.273404359817505
Epoch 1/2: 26%|██▌ | 8900/34343 [1:46:36<3:53:33, 1.82it/s]
Closest words to the center word publish: ['publish', 'parents', 'convince', 'respond', 'devote', 'compelled', 'desire', 'understand', 'him', 'pursue']
Epoch 1/2: 26%|██▌ | 8999/34343 [1:47:34<1:34:00, 4.49it/s]
Epoch 1 Batch 9000 loss: 2.2859272956848145
Epoch 1/2: 26%|██▌ | 9000/34343 [1:47:35<2:24:46, 2.92it/s]
Closest words to the center word born: ['laureate', 'born', 'actress', 'actor', 'inducted', 'pmid', 'prize', 'nobel', 'births', 'cricketer']
Epoch 1/2: 26%|██▋ | 9099/34343 [1:48:34<1:31:28, 4.60it/s]
Epoch 1 Batch 9100 loss: 2.2506296634674072
Epoch 1/2: 26%|██▋ | 9100/34343 [1:48:34<2:22:49, 2.95it/s]
Closest words to the center word databases: ['lossy', 'databases', 'cognitive', 'boolean', 'computational', 'dynamical', 'applications', 'algebra', 'processes', 'spectroscopy']
Epoch 1/2: 27%|██▋ | 9199/34343 [1:49:56<13:42:11, 1.96s/it]
Epoch 1 Batch 9200 loss: 2.211230516433716
Epoch 1/2: 27%|██▋ | 9200/34343 [1:49:57<10:55:05, 1.56s/it]
Closest words to the center word references: ['www', 'icrm', 'links', 'http', 'isbn', 'ifrcs', 'org', 'edu', 'encyclopedia', 'laureate']
Epoch 1/2: 27%|██▋ | 9299/34343 [1:50:57<2:17:39, 3.03it/s]
Epoch 1 Batch 9300 loss: 2.2425570487976074
Epoch 1/2: 27%|██▋ | 9300/34343 [1:50:57<2:58:55, 2.33it/s]
Closest words to the center word root: ['mathbf', 'frac', 'infty', 'cdot', 'rangle', 'vector', 'mathrm', 'langle', 'inverse', 'euclidean']
Epoch 1/2: 27%|██▋ | 9399/34343 [1:51:59<1:30:32, 4.59it/s]
Epoch 1 Batch 9400 loss: 2.238952398300171
Epoch 1/2: 27%|██▋ | 9400/34343 [1:52:00<2:23:05, 2.91it/s]
Closest words to the center word of: ['of', 'est', 'expectancy', 'populous', 'ottoman', 'icrm', 'catholic', 'judicial', 'same', 'holy']
Epoch 1/2: 28%|██▊ | 9499/34343 [1:53:02<1:28:45, 4.67it/s]
Epoch 1 Batch 9500 loss: 2.2426815032958984
Epoch 1/2: 28%|██▊ | 9500/34343 [1:53:03<2:21:21, 2.93it/s]
Closest words to the center word asw: ['gwh', 'runways', 'laureate', 'pmid', 'cdot', 'cyg', 'jul', 'twh', 'icrm', 'grt']
Epoch 1/2: 28%|██▊ | 9599/34343 [1:54:22<9:16:01, 1.35s/it]
Epoch 1 Batch 9600 loss: 2.2299399375915527
Epoch 1/2: 28%|██▊ | 9600/34343 [1:54:22<7:52:19, 1.15s/it]
Closest words to the center word etherboot: ['gwh', 'cyg', 'pmid', 'cdot', 'twh', 'runways', 'jun', 'kwh', 'grt', 'jul']
Epoch 1/2: 28%|██▊ | 9699/34343 [1:55:19<1:36:25, 4.26it/s]
Epoch 1 Batch 9700 loss: 2.273279905319214
Epoch 1/2: 28%|██▊ | 9700/34343 [1:55:19<2:25:33, 2.82it/s]
Closest words to the center word dvd: ['windows', 'cdot', 'pc', 'gwh', 'floppy', 'dvd', 'mbox', 'video', 'os', 'mac']
Epoch 1/2: 29%|██▊ | 9799/34343 [1:56:14<1:26:32, 4.73it/s]
Epoch 1 Batch 9800 loss: 2.206517219543457
Epoch 1/2: 29%|██▊ | 9800/34343 [1:56:14<2:17:25, 2.98it/s]
Closest words to the center word behaviour: ['cognitive', 'beings', 'processes', 'behaviors', 'perception', 'symptoms', 'subjective', 'phenomena', 'belief', 'ideas']
Epoch 1/2: 29%|██▉ | 9899/34343 [1:57:03<1:25:38, 4.76it/s]
Epoch 1 Batch 9900 loss: 2.2395756244659424
Epoch 1/2: 29%|██▉ | 9900/34343 [1:57:04<2:15:31, 3.01it/s]
Closest words to the center word area: ['km', 'capita', 'kilometers', 'area', 'coastline', 'sq', 'runways', 'meters', 'metropolitan', 'nfc']
Epoch 1/2: 29%|██▉ | 9999/34343 [1:58:10<2:44:55, 2.46it/s]
Epoch 1 Batch 10000 loss: 2.2685863971710205
Epoch 1/2: 29%|██▉ | 10000/34343 [1:58:11<3:13:13, 2.10it/s]
Closest words to the center word crime: ['sexual', 'communism', 'health', 'political', 'courts', 'elections', 'jurisdiction', 'economic', 'proponent', 'institutions']
Epoch 1/2: 29%|██▉ | 10099/34343 [1:59:15<1:30:44, 4.45it/s]
Epoch 1 Batch 10100 loss: 2.2157480716705322
Epoch 1/2: 29%|██▉ | 10100/34343 [1:59:15<2:23:56, 2.81it/s]
Closest words to the center word serves: ['serves', 'referred', 'known', 'regarded', 'became', 'insofar', 'is', 'served', 'allows', 'refers']
Epoch 1/2: 30%|██▉ | 10199/34343 [2:00:03<1:26:28, 4.65it/s]
Epoch 1 Batch 10200 loss: 2.212567090988159
Epoch 1/2: 30%|██▉ | 10200/34343 [2:00:04<2:18:40, 2.90it/s]
Closest words to the center word for: ['for', 'manpower', 'gwh', 'cdots', 'cdot', 'lossy', 'gregorian', 'capita', 'best', 'pmid']
Epoch 1/2: 30%|██▉ | 10299/34343 [2:01:07<7:14:17, 1.08s/it]
Epoch 1 Batch 10300 loss: 2.2562217712402344
Epoch 1/2: 30%|██▉ | 10300/34343 [2:01:08<6:20:08, 1.05it/s]
Closest words to the center word generation: ['cdots', 'mathbf', 'macintosh', 'frac', 'generation', 'cdot', 'median', 'mac', 'os', 'infty']
Epoch 1/2: 30%|███ | 10399/34343 [2:02:11<2:01:47, 3.28it/s]
Epoch 1 Batch 10400 loss: 2.2322494983673096
Epoch 1/2: 30%|███ | 10400/34343 [2:02:12<2:42:17, 2.46it/s]
Closest words to the center word density: ['density', 'capita', 'runways', 'gwh', 'median', 'km', 'meters', 'gdp', 'unpaved', 'est']
Epoch 1/2: 31%|███ | 10499/34343 [2:03:19<1:41:39, 3.91it/s]
Epoch 1 Batch 10500 loss: 2.2334342002868652
Epoch 1/2: 31%|███ | 10500/34343 [2:03:19<2:27:20, 2.70it/s]
Closest words to the center word president: ['president', 'minister', 'elected', 'appointed', 'governor', 'secretary', 'appoints', 'chairman', 'presidential', 'vice']
Epoch 1/2: 31%|███ | 10599/34343 [2:04:07<1:23:37, 4.73it/s]
Epoch 1 Batch 10600 loss: 2.2524309158325195
Epoch 1/2: 31%|███ | 10600/34343 [2:04:08<2:13:14, 2.97it/s]
Closest words to the center word marie: ['laureate', 'footballer', 'ois', 'actress', 'cricketer', 'fran', 'pngimage', 'pmid', 'actor', 'chemist']
Epoch 1/2: 31%|███ | 10699/34343 [2:05:01<5:32:27, 1.19it/s]
Epoch 1 Batch 10700 loss: 2.226073741912842
Epoch 1/2: 31%|███ | 10700/34343 [2:05:02<5:08:25, 1.28it/s]
Closest words to the center word slightly: ['slightly', 'inches', 'grt', 'meters', 'than', 'median', 'capita', 'temperatures', 'unpaved', 'faster']
Epoch 1/2: 31%|███▏ | 10799/34343 [2:06:02<1:50:07, 3.56it/s]
Epoch 1 Batch 10800 loss: 2.213536024093628
Epoch 1/2: 31%|███▏ | 10800/34343 [2:06:02<2:24:40, 2.71it/s]
Closest words to the center word who: ['who', 'whom', 'married', 'younger', 'births', 'actors', 'killed', 'singers', 'son', 'accused']
Epoch 1/2: 32%|███▏ | 10899/34343 [2:07:03<1:24:56, 4.60it/s]
Epoch 1 Batch 10900 loss: 2.2501258850097656
Epoch 1/2: 32%|███▏ | 10900/34343 [2:07:03<2:09:57, 3.01it/s]
Closest words to the center word calendar: ['gregorian', 'calendar', 'leap', 'day', 'lunisolar', 'year', 'month', 'bce', 'observances', 'nfc']
Epoch 1/2: 32%|███▏ | 10999/34343 [2:08:06<1:23:34, 4.66it/s]
Epoch 1 Batch 11000 loss: 2.234565019607544
Epoch 1/2: 32%|███▏ | 11000/34343 [2:08:07<2:12:19, 2.94it/s]
Closest words to the center word communications: ['ifrcs', 'intelsat', 'communications', 'demographics', 'telephones', 'opcw', 'iom', 'ifad', 'transportation', 'isps']
Epoch 1/2: 32%|███▏ | 11099/34343 [2:09:00<3:11:12, 2.03it/s]
Epoch 1 Batch 11100 loss: 2.1692628860473633
Epoch 1/2: 32%|███▏ | 11100/34343 [2:09:01<3:32:05, 1.83it/s]
Closest words to the center word names: ['languages', 'dialects', 'names', 'words', 'alphabet', 'cdots', 'verbs', 'nouns', 'phrases', 'speakers']
Epoch 1/2: 33%|███▎ | 11199/34343 [2:09:45<1:27:29, 4.41it/s]
Epoch 1 Batch 11200 loss: 2.212488889694214
Epoch 1/2: 33%|███▎ | 11200/34343 [2:09:46<2:17:52, 2.80it/s]
Closest words to the center word denmark: ['denmark', 'republic', 'slovenia', 'serbia', 'austria', 'observances', 'poland', 'hungary', 'lithuania', 'montenegro']
Epoch 1/2: 33%|███▎ | 11299/34343 [2:10:34<1:21:01, 4.74it/s]
Epoch 1 Batch 11300 loss: 2.241395950317383
Epoch 1/2: 33%|███▎ | 11300/34343 [2:10:34<2:13:54, 2.87it/s]
Closest words to the center word proved: ['gwh', 'grt', 'proved', 'lasted', 'twh', 'vote', 'cyg', 'election', 'householder', 'speculated']
Epoch 1/2: 33%|███▎ | 11399/34343 [2:11:38<31:19:09, 4.91s/it]
Epoch 1 Batch 11400 loss: 2.2049591541290283
Epoch 1/2: 33%|███▎ | 11400/34343 [2:11:39<23:23:50, 3.67s/it]
Closest words to the center word food: ['commodities', 'imports', 'textiles', 'ifad', 'exports', 'fuels', 'machinery', 'ifrcs', 'vegetables', 'pollution']
Epoch 1/2: 33%|███▎ | 11499/34343 [2:12:49<3:07:23, 2.03it/s]
Epoch 1 Batch 11500 loss: 2.1915111541748047
Epoch 1/2: 33%|███▎ | 11500/34343 [2:12:49<3:28:27, 1.83it/s]
Closest words to the center word opposed: ['opposed', 'referred', 'republics', 'conservative', 'wipo', 'regarded', 'communist', 'socialist', 'conservatives', 'appointed']
Epoch 1/2: 34%|███▍ | 11599/34343 [2:13:44<1:24:20, 4.49it/s]
Epoch 1 Batch 11600 loss: 2.1804370880126953
Epoch 1/2: 34%|███▍ | 11600/34343 [2:13:45<2:18:10, 2.74it/s]
Closest words to the center word leadership: ['leadership', 'socialist', 'privy', 'communist', 'democratic', 'liberties', 'overthrow', 'ministers', 'republics', 'party']
Epoch 1/2: 34%|███▍ | 11699/34343 [2:14:38<1:20:35, 4.68it/s]
Epoch 1 Batch 11700 loss: 2.2079873085021973
Epoch 1/2: 34%|███▍ | 11700/34343 [2:14:38<2:05:47, 3.00it/s]
Closest words to the center word two: ['gwh', 'cyg', 'twh', 'pmid', 'grt', 'kwh', 'unpaved', 'jun', 'sep', 'runways']
Epoch 1/2: 34%|███▍ | 11799/34343 [2:15:43<9:35:59, 1.53s/it]
Epoch 1 Batch 11800 loss: 2.204357385635376
Epoch 1/2: 34%|███▍ | 11800/34343 [2:15:44<8:02:17, 1.28s/it]
Closest words to the center word upgrade: ['gwh', 'kwh', 'unpaved', 'runways', 'grt', 'capita', 'twh', 'isps', 'cyg', 'mhz']
Epoch 1/2: 35%|███▍ | 11899/34343 [2:16:33<1:30:12, 4.15it/s]
Epoch 1 Batch 11900 loss: 2.221238136291504
Epoch 1/2: 35%|███▍ | 11900/34343 [2:16:33<2:19:56, 2.67it/s]
Closest words to the center word chesterton: ['cdot', 'cdots', 'rightarrow', 'rangle', 'mathbf', 'otimes', 'frac', 'rang', 'qquad', 'cos']
Epoch 1/2: 35%|███▍ | 11999/34343 [2:17:19<1:25:11, 4.37it/s]
Epoch 1 Batch 12000 loss: 2.1798417568206787
Epoch 1/2: 35%|███▍ | 12000/34343 [2:17:20<2:14:34, 2.77it/s]
Closest words to the center word they: ['they', 'we', 'you', 'happen', 'not', 'he', 'decide', 'themselves', 'occur', 'able']
Epoch 1/2: 35%|███▌ | 12099/34343 [2:18:06<1:21:18, 4.56it/s]
Epoch 1 Batch 12100 loss: 2.215872287750244
Epoch 1/2: 35%|███▌ | 12100/34343 [2:18:06<2:10:05, 2.85it/s]
Closest words to the center word informal: ['empirical', 'implications', 'ethical', 'grammatical', 'cognitive', 'anarcho', 'rabbinic', 'computational', 'grammar', 'verbs']
Epoch 1/2: 36%|███▌ | 12199/34343 [2:19:00<2:28:31, 2.48it/s]
Epoch 1 Batch 12200 loss: 2.1946401596069336
Epoch 1/2: 36%|███▌ | 12200/34343 [2:19:01<3:02:58, 2.02it/s]
Closest words to the center word games: ['games', 'game', 'consoles', 'championship', 'video', 'playstation', 'console', 'football', 'baseball', 'kart']
Epoch 1/2: 36%|███▌ | 12299/34343 [2:19:44<1:22:36, 4.45it/s]
Epoch 1 Batch 12300 loss: 2.2030444145202637
Epoch 1/2: 36%|███▌ | 12300/34343 [2:19:45<2:12:41, 2.77it/s]
Closest words to the center word reach: ['reach', 'grt', 'meters', 'nfc', 'kilometers', 'km', 'lose', 'playoffs', 'afc', 'kilometres']
Epoch 1/2: 36%|███▌ | 12399/34343 [2:20:19<1:21:03, 4.51it/s]
Epoch 1 Batch 12400 loss: 2.1845791339874268
Epoch 1/2: 36%|███▌ | 12400/34343 [2:20:20<2:04:08, 2.95it/s]
Closest words to the center word mary: ['mary', 'eldest', 'jesus', 'nephew', 'son', 'aragon', 'brother', 'grandson', 'earl', 'duke']
Epoch 1/2: 36%|███▋ | 12499/34343 [2:21:26<17:57:48, 2.96s/it]
Epoch 1 Batch 12500 loss: 2.248018980026245
Epoch 1/2: 36%|███▋ | 12500/34343 [2:21:26<13:45:35, 2.27s/it]
Closest words to the center word mean: ['mathbf', 'frac', 'infty', 'cdots', 'inverse', 'cdot', 'mathrm', 'rangle', 'mbox', 'mean']
Epoch 1/2: 37%|███▋ | 12599/34343 [2:22:10<2:21:06, 2.57it/s]
Epoch 1 Batch 12600 loss: 2.2393078804016113
Epoch 1/2: 37%|███▋ | 12600/34343 [2:22:11<2:49:14, 2.14it/s]
Closest words to the center word method: ['boolean', 'entropy', 'vector', 'mechanics', 'differential', 'quantum', 'dynamical', 'equations', 'coding', 'lossy']
Epoch 1/2: 37%|███▋ | 12699/34343 [2:22:57<1:19:39, 4.53it/s]
Epoch 1 Batch 12700 loss: 2.1995980739593506
Epoch 1/2: 37%|███▋ | 12700/34343 [2:22:58<2:22:52, 2.52it/s]
Closest words to the center word subsequent: ['reign', 'subsequent', 'semitism', 'political', 'economic', 'reforms', 'lasted', 'stalin', 'abuses', 'napoleonic']
Epoch 1/2: 37%|███▋ | 12799/34343 [2:23:49<1:17:18, 4.64it/s]
Epoch 1 Batch 12800 loss: 2.1995325088500977
Epoch 1/2: 37%|███▋ | 12800/34343 [2:23:50<2:00:18, 2.98it/s]
Closest words to the center word contingent: ['pluriform', 'socio', 'desertification', 'vested', 'judiciary', 'monetary', 'economic', 'bordering', 'judicial', 'coasts']
Epoch 1/2: 38%|███▊ | 12899/34343 [2:24:42<7:27:26, 1.25s/it]
Epoch 1 Batch 12900 loss: 2.247729539871216
Epoch 1/2: 38%|███▊ | 12900/34343 [2:24:43<6:31:54, 1.10s/it]
Closest words to the center word british: ['british', 'laureate', 'politician', 'american', 'canadian', 'nobel', 'ifrcs', 'footballer', 'ifad', 'actor']
Epoch 1/2: 38%|███▊ | 12999/34343 [2:25:31<2:17:46, 2.58it/s]
Epoch 1 Batch 13000 loss: 2.226405620574951
Epoch 1/2: 38%|███▊ | 13000/34343 [2:25:32<2:43:28, 2.18it/s]
Closest words to the center word battles: ['battles', 'gregorian', 'wars', 'ottoman', 'reign', 'war', 'outbreak', 'napoleonic', 'fought', 'invaded']
Epoch 1/2: 38%|███▊ | 13099/34343 [2:26:19<1:20:39, 4.39it/s]
Epoch 1 Batch 13100 loss: 2.228623628616333
Epoch 1/2: 38%|███▊ | 13100/34343 [2:26:19<2:01:37, 2.91it/s]
Closest words to the center word ring: ['mathbf', 'cdots', 'frac', 'rightarrow', 'rangle', 'cdot', 'rang', 'langle', 'infty', 'mathcal']
Epoch 1/2: 38%|███▊ | 13199/34343 [2:27:01<1:14:37, 4.72it/s]
Epoch 1 Batch 13200 loss: 2.221473217010498
Epoch 1/2: 38%|███▊ | 13200/34343 [2:27:01<1:57:55, 2.99it/s]
Closest words to the center word jeane: ['laureate', 'cyg', 'gwh', 'comedian', 'actor', 'footballer', 'grt', 'actress', 'inducted', 'pmid']
Epoch 1/2: 39%|███▊ | 13299/34343 [2:27:58<6:38:36, 1.14s/it]
Epoch 1 Batch 13300 loss: 2.1854989528656006
Epoch 1/2: 39%|███▊ | 13300/34343 [2:27:59<5:47:55, 1.01it/s]
Closest words to the center word v: ['cdots', 'cdot', 'frac', 'rangle', 'rightarrow', 'mathbf', 'qquad', 'infty', 'rang', 'leq']
Epoch 1/2: 39%|███▉ | 13399/34343 [2:28:42<1:34:43, 3.69it/s]
Epoch 1 Batch 13400 loss: 2.2130494117736816
Epoch 1/2: 39%|███▉ | 13400/34343 [2:28:43<2:11:23, 2.66it/s]
Closest words to the center word type: ['vector', 'electromagnetic', 'covalent', 'subset', 'morphism', 'ions', 'type', 'hydrogen', 'lossy', 'euclidean']
Epoch 1/2: 39%|███▉ | 13499/34343 [2:29:30<1:16:09, 4.56it/s]
Epoch 1 Batch 13500 loss: 2.2179203033447266
Epoch 1/2: 39%|███▉ | 13500/34343 [2:29:30<1:57:49, 2.95it/s]
Closest words to the center word freemasons: ['wftu', 'wipo', 'unido', 'wmo', 'upu', 'ifrcs', 'ifad', 'wtoo', 'tribes', 'aryans']
Epoch 1/2: 40%|███▉ | 13599/34343 [2:30:30<1:12:31, 4.77it/s]
Epoch 1 Batch 13600 loss: 2.207820177078247
Epoch 1/2: 40%|███▉ | 13600/34343 [2:30:31<1:51:01, 3.11it/s]
Closest words to the center word for: ['for', 'manpower', 'capita', 'parity', 'lossy', 'gwh', 'gregorian', 'cdot', 'copyleft', 'newnode']
Epoch 1/2: 40%|███▉ | 13699/34343 [2:31:16<2:26:15, 2.35it/s]
Epoch 1 Batch 13700 loss: 2.229189395904541
Epoch 1/2: 40%|███▉ | 13700/34343 [2:31:17<2:50:38, 2.02it/s]
Closest words to the center word ale: ['ifad', 'ifrcs', 'icrm', 'callithrix', 'fricative', 'classis', 'ifc', 'sauce', 'agave', 'aloe']
Epoch 1/2: 40%|████ | 13799/34343 [2:31:59<1:18:16, 4.37it/s]
Epoch 1 Batch 13800 loss: 2.2239222526550293
Epoch 1/2: 40%|████ | 13800/34343 [2:31:59<2:00:38, 2.84it/s]
Closest words to the center word stored: ['stored', 'storage', 'cathode', 'disk', 'lossy', 'floppy', 'input', 'vector', 'circuits', 'combustion']
Epoch 1/2: 40%|████ | 13899/34343 [2:32:36<1:13:06, 4.66it/s]
Epoch 1 Batch 13900 loss: 2.2027957439422607
Epoch 1/2: 40%|████ | 13900/34343 [2:32:37<1:55:49, 2.94it/s]
Closest words to the center word will: ['will', 'shall', 'would', 'must', 'can', 'should', 'could', 'does', 'might', 'doesn']
Epoch 1/2: 41%|████ | 13999/34343 [2:33:13<1:10:47, 4.79it/s]
Epoch 1 Batch 14000 loss: 2.2237448692321777
Epoch 1/2: 41%|████ | 14000/34343 [2:33:19<10:25:14, 1.84s/it]
Closest words to the center word changed: ['changed', 'gregorian', 'sixteenth', 'traced', 'lasted', 'weakened', 'ratified', 'ottoman', 'postponed', 'adopted']
Epoch 1/2: 41%|████ | 14099/34343 [2:33:56<2:02:07, 2.76it/s]
Epoch 1 Batch 14100 loss: 2.222094774246216
Epoch 1/2: 41%|████ | 14100/34343 [2:33:56<2:29:22, 2.26it/s]
Closest words to the center word wages: ['manpower', 'wages', 'expenditures', 'income', 'males', 'revenues', 'investment', 'prices', 'mortality', 'rates']
Epoch 1/2: 41%|████▏ | 14199/34343 [2:34:34<1:13:00, 4.60it/s]
Epoch 1 Batch 14200 loss: 2.184338092803955
Epoch 1/2: 41%|████▏ | 14200/34343 [2:34:35<1:52:56, 2.97it/s]
Closest words to the center word a: ['a', 'any', 'mathbf', 'every', 'cdot', 'an', 'infty', 'mathrm', 'countable', 'another']
Epoch 1/2: 42%|████▏ | 14299/34343 [2:35:09<1:09:43, 4.79it/s]
Epoch 1 Batch 14300 loss: 2.216555595397949
Epoch 1/2: 42%|████▏ | 14300/34343 [2:35:09<1:49:01, 3.06it/s]
Closest words to the center word same: ['same', 'gregorian', 'polynomial', 'frac', 'cardinality', 'mathbf', 'inverse', 'discrete', 'exact', 'focal']
Epoch 1/2: 42%|████▏ | 14399/34343 [2:35:52<8:07:24, 1.47s/it]
Epoch 1 Batch 14400 loss: 2.2166624069213867
Epoch 1/2: 42%|████▏ | 14400/34343 [2:35:53<6:44:04, 1.22s/it]
Closest words to the center word user: ['user', 'findable', 'interface', 'gnu', 'server', 'lossy', 'browser', 'browsers', 'dns', 'graphical']
Epoch 1/2: 42%|████▏ | 14499/34343 [2:36:33<1:19:21, 4.17it/s]
Epoch 1 Batch 14500 loss: 2.2113637924194336
Epoch 1/2: 42%|████▏ | 14500/34343 [2:36:34<2:10:10, 2.54it/s]
Closest words to the center word fine: ['sauce', 'beverages', 'nickel', 'vegetables', 'liquid', 'hydroxide', 'dairy', 'minerals', 'metal', 'fine']
Epoch 1/2: 43%|████▎ | 14599/34343 [2:37:09<1:10:03, 4.70it/s]
Epoch 1 Batch 14600 loss: 2.209588050842285
Epoch 1/2: 43%|████▎ | 14600/34343 [2:37:10<1:50:39, 2.97it/s]
Closest words to the center word for: ['for', 'manpower', 'newnode', 'lossy', 'parity', 'insubstantial', 'capita', 'lossless', 'median', 'copyleft']
Epoch 1/2: 43%|████▎ | 14699/34343 [2:37:46<1:11:10, 4.60it/s]
Epoch 1 Batch 14700 loss: 2.2102251052856445
Epoch 1/2: 43%|████▎ | 14700/34343 [2:37:46<1:50:45, 2.96it/s]
Closest words to the center word following: ['gregorian', 'following', 'calendar', 'leap', 'punic', 'lunisolar', 'napoleonic', 'factbook', 'ottoman', 'feast']
Epoch 1/2: 43%|████▎ | 14799/34343 [2:38:31<3:12:17, 1.69it/s]
Epoch 1 Batch 14800 loss: 2.21830677986145
Epoch 1/2: 43%|████▎ | 14800/34343 [2:38:32<3:19:50, 1.63it/s]
Closest words to the center word dancing: ['piano', 'jazz', 'solo', 'singers', 'dancing', 'genres', 'musical', 'singing', 'folk', 'violin']
Epoch 1/2: 43%|████▎ | 14899/34343 [2:39:29<1:22:30, 3.93it/s]
Epoch 1 Batch 14900 loss: 2.1905465126037598
Epoch 1/2: 43%|████▎ | 14900/34343 [2:39:30<2:00:53, 2.68it/s]
Closest words to the center word gorges: ['km', 'unpaved', 'runways', 'humid', 'irrigated', 'temperate', 'pastures', 'arable', 'coastline', 'elevation']
Epoch 1/2: 44%|████▎ | 14999/34343 [2:40:11<1:08:21, 4.72it/s]
Epoch 1 Batch 15000 loss: 2.2109179496765137
Epoch 1/2: 44%|████▎ | 15000/34343 [2:40:11<1:51:52, 2.88it/s]
Closest words to the center word compiling: ['lossy', 'browsers', 'input', 'lossless', 'boolean', 'bilinear', 'formats', 'dynamical', 'homomorphism', 'applications']
Epoch 1/2: 44%|████▍ | 15099/34343 [2:41:10<22:00:38, 4.12s/it]
Epoch 1 Batch 15100 loss: 2.195054054260254
Epoch 1/2: 44%|████▍ | 15100/34343 [2:41:11<16:38:17, 3.11s/it]
Closest words to the center word amd: ['gwh', 'kwh', 'cyg', 'twh', 'rfc', 'pmid', 'intel', 'isps', 'unpaved', 'ieee']
Epoch 1/2: 44%|████▍ | 15199/34343 [2:41:56<2:02:27, 2.61it/s]
Epoch 1 Batch 15200 loss: 2.172524929046631
Epoch 1/2: 44%|████▍ | 15200/34343 [2:41:57<2:30:38, 2.12it/s]
Closest words to the center word al: ['al', 'ibn', 'abu', 'abd', 'agave', 'bin', 'ifrcs', 'unctad', 'wahhab', 'unido']
Epoch 1/2: 45%|████▍ | 15299/34343 [2:43:09<1:19:00, 4.02it/s]
Epoch 1 Batch 15300 loss: 2.2157206535339355
Epoch 1/2: 45%|████▍ | 15300/34343 [2:43:10<1:54:51, 2.76it/s]
Closest words to the center word most: ['most', 'more', 'many', 'less', 'largest', 'earliest', 'best', 'populous', 'widely', 'among']
Epoch 1/2: 45%|████▍ | 15399/34343 [2:44:20<1:07:51, 4.65it/s]
Epoch 1 Batch 15400 loss: 2.1843748092651367
Epoch 1/2: 45%|████▍ | 15400/34343 [2:44:21<1:44:43, 3.01it/s]
Closest words to the center word estonian: ['laureate', 'footballer', 'finalist', 'ivoire', 'estonian', 'ibrd', 'slovak', 'icrm', 'czech', 'physiologist']
Epoch 1/2: 45%|████▌ | 15499/34343 [2:45:47<19:14:30, 3.68s/it]
Epoch 1 Batch 15500 loss: 2.217909336090088
Epoch 1/2: 45%|████▌ | 15500/34343 [2:45:47<14:24:56, 2.75s/it]
Closest words to the center word portions: ['portions', 'denominations', 'ghats', 'basins', 'deserts', 'peoples', 'uplands', 'deposits', 'tributaries', 'shores']
Epoch 1/2: 45%|████▌ | 15599/34343 [2:46:44<1:55:41, 2.70it/s]
Epoch 1 Batch 15600 loss: 2.2558064460754395
Epoch 1/2: 45%|████▌ | 15600/34343 [2:46:45<2:19:36, 2.24it/s]
Closest words to the center word by: ['by', 'agave', 'ifrcs', 'ifc', 'unctad', 'icrm', 'ifad', 'gwh', 'cyg', 'newly']
Epoch 1/2: 46%|████▌ | 15699/34343 [2:47:36<1:11:29, 4.35it/s]
Epoch 1 Batch 15700 loss: 2.2247748374938965
Epoch 1/2: 46%|████▌ | 15700/34343 [2:47:37<1:46:19, 2.92it/s]
Closest words to the center word sade: ['sade', 'anh', 'baptiste', 'ois', 'biography', 'cegep', 'medici', 'johann', 'renoir', 'laureate']
Epoch 1/2: 46%|████▌ | 15799/34343 [2:48:44<1:05:14, 4.74it/s]
Epoch 1 Batch 15800 loss: 2.1729252338409424
Epoch 1/2: 46%|████▌ | 15800/34343 [2:48:45<1:42:05, 3.03it/s]
Closest words to the center word emerging: ['ifrcs', 'desertification', 'ifad', 'ilo', 'unctad', 'faire', 'socio', 'oau', 'iom', 'ifc']
Epoch 1/2: 46%|████▋ | 15899/34343 [2:49:45<9:27:05, 1.84s/it]
Epoch 1 Batch 15900 loss: 2.181105613708496
Epoch 1/2: 46%|████▋ | 15900/34343 [2:49:45<7:33:59, 1.48s/it]
Closest words to the center word in: ['in', 'throughout', 'pmid', 'nfc', 'kwh', 'gregorian', 'during', 'until', 'gwh', 'cyg']
Epoch 1/2: 47%|████▋ | 15999/34343 [2:50:37<1:35:13, 3.21it/s]
Epoch 1 Batch 16000 loss: 2.2073497772216797
Epoch 1/2: 47%|████▋ | 16000/34343 [2:50:38<2:01:31, 2.52it/s]
Closest words to the center word groups: ['groups', 'ethnic', 'denominations', 'religions', 'minorities', 'parties', 'dialects', 'genders', 'minority', 'faiths']
Epoch 1/2: 47%|████▋ | 16099/34343 [2:51:19<1:09:39, 4.36it/s]
Epoch 1 Batch 16100 loss: 2.1873230934143066
Epoch 1/2: 47%|████▋ | 16100/34343 [2:51:19<1:46:05, 2.87it/s]
Closest words to the center word india: ['timor', 'tajikistan', 'namibia', 'lanka', 'asia', 'swaziland', 'zambia', 'indonesia', 'india', 'nepal']
Epoch 1/2: 47%|████▋ | 16199/34343 [2:52:04<1:04:15, 4.71it/s]
Epoch 1 Batch 16200 loss: 2.1928420066833496
Epoch 1/2: 47%|████▋ | 16200/34343 [2:52:05<1:43:11, 2.93it/s]
Closest words to the center word coaches: ['coach', 'playoffs', 'afc', 'nfc', 'gwh', 'kwh', 'runways', 'finalist', 'basketball', 'footballer']
Epoch 1/2: 47%|████▋ | 16299/34343 [2:53:12<4:34:32, 1.10it/s]
Epoch 1 Batch 16300 loss: 2.2128429412841797
Epoch 1/2: 47%|████▋ | 16300/34343 [2:53:13<4:09:27, 1.21it/s]
Closest words to the center word found: ['found', 'mentioned', 'buried', 'agave', 'soluble', 'located', 'explained', 'shown', 'discovered', 'traced']
Epoch 1/2: 48%|████▊ | 16399/34343 [2:54:06<1:17:20, 3.87it/s]
Epoch 1 Batch 16400 loss: 2.2028470039367676
Epoch 1/2: 48%|████▊ | 16400/34343 [2:54:07<1:49:27, 2.73it/s]
Closest words to the center word officer: ['officer', 'secretary', 'commander', 'deputy', 'unido', 'minister', 'appoints', 'marshal', 'politician', 'unctad']
Epoch 1/2: 48%|████▊ | 16499/34343 [2:55:03<1:02:54, 4.73it/s]
Epoch 1 Batch 16500 loss: 2.228391408920288
Epoch 1/2: 48%|████▊ | 16500/34343 [2:55:03<1:40:02, 2.97it/s]
Closest words to the center word nero: ['tiberius', 'emperor', 'elector', 'grandson', 'throne', 'alexius', 'constantius', 'eldest', 'maximilian', 'aurelius']
Epoch 1/2: 48%|████▊ | 16599/34343 [2:55:51<1:05:26, 4.52it/s]
Epoch 1 Batch 16600 loss: 2.1958260536193848
Epoch 1/2: 48%|████▊ | 16600/34343 [2:55:51<1:37:40, 3.03it/s]
Closest words to the center word europe: ['asia', 'populous', 'europe', 'scandinavia', 'nfc', 'bordering', 'annexed', 'subcontinent', 'timor', 'eurasia']
Epoch 1/2: 49%|████▊ | 16699/34343 [2:56:46<2:28:17, 1.98it/s]
Epoch 1 Batch 16700 loss: 2.1679584980010986
Epoch 1/2: 49%|████▊ | 16700/34343 [2:56:46<2:39:58, 1.84it/s]
Closest words to the center word the: ['the', 'nfc', 'vernal', 'populous', 'afc', 'solar', 'scrimmage', 'its', 'frac', 'ecliptic']
Epoch 1/2: 49%|████▉ | 16799/34343 [2:57:45<1:04:42, 4.52it/s]
Epoch 1 Batch 16800 loss: 2.1783878803253174
Epoch 1/2: 49%|████▉ | 16800/34343 [2:57:46<1:40:17, 2.92it/s]
Closest words to the center word order: ['order', 'differential', 'attempt', 'node', 'alphabetical', 'relation', 'accordance', 'topological', 'predicate', 'isomorphic']
Epoch 1/2: 49%|████▉ | 16899/34343 [2:58:33<1:01:27, 4.73it/s]
Epoch 1 Batch 16900 loss: 2.2228479385375977
Epoch 1/2: 49%|████▉ | 16900/34343 [2:58:33<1:39:04, 2.93it/s]
Closest words to the center word included: ['included', 'published', 'playstation', 'appeared', 'featured', 'twh', 'bwv', 'released', 'gregorian', 'cyg']
Epoch 1/2: 49%|████▉ | 16999/34343 [2:59:30<14:07:21, 2.93s/it]
Epoch 1 Batch 17000 loss: 2.196394205093384
Epoch 1/2: 50%|████▉ | 17000/34343 [2:59:30<10:56:10, 2.27s/it]
Closest words to the center word scottish: ['laureate', 'footballer', 'theologian', 'politician', 'cricketer', 'scottish', 'physiologist', 'statesman', 'novelists', 'chemist']
Epoch 1/2: 50%|████▉ | 17099/34343 [3:00:18<1:39:05, 2.90it/s]
Epoch 1 Batch 17100 loss: 2.187544584274292
Epoch 1/2: 50%|████▉ | 17100/34343 [3:00:18<2:03:07, 2.33it/s]
Closest words to the center word pilots: ['grt', 'playoffs', 'missiles', 'pilots', 'aircraft', 'manpower', 'runways', 'ships', 'gwh', 'helicopters']
Epoch 1/2: 50%|█████ | 17199/34343 [3:01:01<1:01:09, 4.67it/s]
Epoch 1 Batch 17200 loss: 2.1696689128875732
Epoch 1/2: 50%|█████ | 17200/34343 [3:01:01<1:42:26, 2.79it/s]
Closest words to the center word comstock: ['gwh', 'twh', 'ifrcs', 'ifad', 'icrm', 'ifc', 'cyg', 'jul', 'agave', 'pngimage']
Epoch 1/2: 50%|█████ | 17299/34343 [3:01:58<1:00:05, 4.73it/s]
Epoch 1 Batch 17300 loss: 2.1982107162475586
Epoch 1/2: 50%|█████ | 17300/34343 [3:01:59<1:34:10, 3.02it/s]
Closest words to the center word and: ['ifad', 'ifrcs', 'ifc', 'icrm', 'icftu', 'gwh', 'kwh', 'unctad', 'and', 'unido']
Epoch 1/2: 51%|█████ | 17399/34343 [3:03:02<3:11:06, 1.48it/s]
Epoch 1 Batch 17400 loss: 2.195021629333496
Epoch 1/2: 51%|█████ | 17400/34343 [3:03:03<3:19:05, 1.42it/s]
Closest words to the center word during: ['during', 'period', 'manpower', 'war', 'outbreak', 'napoleonic', 'triassic', 'cretaceous', 'nfc', 'ottoman']
Epoch 1/2: 51%|█████ | 17499/34343 [3:03:46<1:07:06, 4.18it/s]
Epoch 1 Batch 17500 loss: 2.182107925415039
Epoch 1/2: 51%|█████ | 17500/34343 [3:03:47<1:39:42, 2.82it/s]
Closest words to the center word line: ['scrimmage', 'line', 'mjs', 'cdots', 'perpendicular', 'node', 'pngimage', 'cue', 'playoffs', 'ecliptic']
Epoch 1/2: 51%|█████ | 17599/34343 [3:04:33<59:36, 4.68it/s]
Epoch 1 Batch 17600 loss: 2.21285080909729
Epoch 1/2: 51%|█████ | 17600/34343 [3:04:33<1:32:42, 3.01it/s]
Closest words to the center word or: ['or', 'ifad', 'nucleic', 'reactive', 'carboxylic', 'ifrcs', 'covalent', 'than', 'carbohydrates', 'ions']
Epoch 1/2: 52%|█████▏ | 17699/34343 [3:05:15<1:00:43, 4.57it/s]
Epoch 1 Batch 17700 loss: 2.1553187370300293
Epoch 1/2: 52%|█████▏ | 17700/34343 [3:05:30<21:04:49, 4.56s/it]
Closest words to the center word plateau: ['plateau', 'bordering', 'mountainous', 'humid', 'temperate', 'hilly', 'subtropical', 'southwest', 'basin', 'coastal']
Epoch 1/2: 52%|█████▏ | 17799/34343 [3:06:38<3:27:30, 1.33it/s]
Epoch 1 Batch 17800 loss: 2.158411979675293
Epoch 1/2: 52%|█████▏ | 17800/34343 [3:06:39<3:15:00, 1.41it/s]
Closest words to the center word name: ['name', 'alphabet', 'word', 'title', 'derives', 'surname', 'derived', 'testament', 'hebrew', 'names']
Epoch 1/2: 52%|█████▏ | 17899/34343 [3:07:28<1:07:02, 4.09it/s]
Epoch 1 Batch 17900 loss: 2.1678919792175293
Epoch 1/2: 52%|█████▏ | 17900/34343 [3:07:29<1:40:59, 2.71it/s]
Closest words to the center word tr: ['cdots', 'rightarrow', 'cdot', 'leq', 'otimes', 'qquad', 'equiv', 'aq', 'mbox', 'rang']
Epoch 1/2: 52%|█████▏ | 17999/34343 [3:08:10<58:23, 4.66it/s]
Epoch 1 Batch 18000 loss: 2.214918375015259
Epoch 1/2: 52%|█████▏ | 18000/34343 [3:08:11<1:31:00, 2.99it/s]
Closest words to the center word one: ['gwh', 'cyg', 'twh', 'kwh', 'jul', 'grt', 'pmid', 'unpaved', 'lup', 'pngimage']
Epoch 1/2: 53%|█████▎ | 18099/34343 [3:09:12<11:17:49, 2.50s/it]
Epoch 1 Batch 18100 loss: 2.172701597213745
Epoch 1/2: 53%|█████▎ | 18100/34343 [3:09:12<8:46:37, 1.95s/it]
Closest words to the center word khartoum: ['opcw', 'iom', 'rupee', 'swaziland', 'nfc', 'tajikistan', 'barbuda', 'zambia', 'ifc', 'bordering']
Epoch 1/2: 53%|█████▎ | 18199/34343 [3:09:55<1:38:37, 2.73it/s]
Epoch 1 Batch 18200 loss: 2.181840658187866
Epoch 1/2: 53%|█████▎ | 18200/34343 [3:09:55<2:00:25, 2.23it/s]
Closest words to the center word mitsubishi: ['gwh', 'kwh', 'unpaved', 'twh', 'runways', 'cyg', 'mjs', 'dwt', 'pngimage', 'telephones']
Epoch 1/2: 53%|█████▎ | 18299/34343 [3:10:52<1:03:13, 4.23it/s]
Epoch 1 Batch 18300 loss: 2.1708874702453613
Epoch 1/2: 53%|█████▎ | 18300/34343 [3:10:53<1:33:06, 2.87it/s]
Closest words to the center word apple: ['macintosh', 'apple', 'amiga', 'ibm', 'intel', 'microsoft', 'atari', 'pc', 'mac', 'playstation']
Epoch 1/2: 54%|█████▎ | 18399/34343 [3:11:50<56:32, 4.70it/s]
Epoch 1 Batch 18400 loss: 2.180054187774658
Epoch 1/2: 54%|█████▎ | 18400/34343 [3:11:51<1:28:37, 3.00it/s]
Closest words to the center word prior: ['prior', 'grt', 'gwh', 'twh', 'spend', 'manpower', 'devote', 'kwh', 'leap', 'resolve']
Epoch 1/2: 54%|█████▍ | 18499/34343 [3:12:47<7:25:49, 1.69s/it]
Epoch 1 Batch 18500 loss: 2.1845858097076416
Epoch 1/2: 54%|█████▍ | 18500/34343 [3:12:47<6:00:32, 1.37s/it]
Closest words to the center word horse: ['horse', 'sox', 'callithrix', 'humid', 'playoffs', 'grt', 'equus', 'playoff', 'tamarin', 'wild']
Epoch 1/2: 54%|█████▍ | 18599/34343 [3:13:35<1:22:50, 3.17it/s]
Epoch 1 Batch 18600 loss: 2.209273099899292
Epoch 1/2: 54%|█████▍ | 18600/34343 [3:13:36<1:46:07, 2.47it/s]
Closest words to the center word different: ['different', 'distinct', 'variety', 'countably', 'eukaryotic', 'abelian', 'grammatical', 'various', 'finite', 'multicellular']
Epoch 1/2: 54%|█████▍ | 18699/34343 [3:14:18<1:03:57, 4.08it/s]
Epoch 1 Batch 18700 loss: 2.2018415927886963
Epoch 1/2: 54%|█████▍ | 18700/34343 [3:14:18<1:32:36, 2.82it/s]
Closest words to the center word catastrophic: ['humid', 'ottoman', 'outbreak', 'rainfall', 'ottomans', 'recession', 'manpower', 'grt', 'erosion', 'humidity']
Epoch 1/2: 55%|█████▍ | 18799/34343 [3:15:04<54:35, 4.75it/s]
Epoch 1 Batch 18800 loss: 2.192572593688965
Epoch 1/2: 55%|█████▍ | 18800/34343 [3:15:05<1:23:57, 3.09it/s]
Closest words to the center word m: ['cdots', 'cdot', 'rightarrow', 'qquad', 'mathbf', 'leq', 'cyg', 'otimes', 'frac', 'mathrm']
Epoch 1/2: 55%|█████▌ | 18899/34343 [3:16:10<4:38:27, 1.08s/it]
Epoch 1 Batch 18900 loss: 2.1832780838012695
Epoch 1/2: 55%|█████▌ | 18900/34343 [3:16:10<4:07:20, 1.04it/s]
Closest words to the center word dawlah: ['gwh', 'cyg', 'twh', 'pngimage', 'jul', 'kwh', 'grt', 'pmid', 'finalist', 'icrm']
Epoch 1/2: 55%|█████▌ | 18999/34343 [3:17:00<1:09:28, 3.68it/s]
Epoch 1 Batch 19000 loss: 2.15401029586792
Epoch 1/2: 55%|█████▌ | 19000/34343 [3:17:00<1:35:46, 2.67it/s]
Closest words to the center word runs: ['nfc', 'runs', 'afc', 'playoffs', 'runways', 'unpaved', 'divisional', 'grt', 'playoff', 'kilometers']
Epoch 1/2: 56%|█████▌ | 19099/34343 [3:17:46<53:35, 4.74it/s]
Epoch 1 Batch 19100 loss: 2.178741455078125
Epoch 1/2: 56%|█████▌ | 19100/34343 [3:17:47<1:24:18, 3.01it/s]
Closest words to the center word word: ['word', 'verb', 'alphabet', 'nouns', 'hebrew', 'infinitive', 'derives', 'adjectives', 'declension', 'aramaic']
Epoch 1/2: 56%|█████▌ | 19199/34343 [3:18:34<53:49, 4.69it/s]
Epoch 1 Batch 19200 loss: 2.2004618644714355
Epoch 1/2: 56%|█████▌ | 19200/34343 [3:18:35<1:23:38, 3.02it/s]
Closest words to the center word coherent: ['topological', 'priori', 'homomorphism', 'eukaryotic', 'pluriform', 'countably', 'coherent', 'holomorphic', 'irreducibly', 'thermodynamic']
Epoch 1/2: 56%|█████▌ | 19299/34343 [3:19:39<4:12:36, 1.01s/it]
Epoch 1 Batch 19300 loss: 2.1489410400390625
Epoch 1/2: 56%|█████▌ | 19300/34343 [3:19:40<3:45:58, 1.11it/s]
Closest words to the center word national: ['national', 'unctad', 'ifc', 'ifrcs', 'opcw', 'icrm', 'iom', 'unicameral', 'ifad', 'wto']
Epoch 1/2: 56%|█████▋ | 19399/34343 [3:20:36<55:27, 4.49it/s]
Epoch 1 Batch 19400 loss: 2.1447086334228516
Epoch 1/2: 56%|█████▋ | 19400/34343 [3:20:36<1:24:31, 2.95it/s]
Closest words to the center word nine: ['gwh', 'kwh', 'twh', 'cyg', 'pngimage', 'jul', 'grt', 'pmid', 'births', 'nfc']
Epoch 1/2: 57%|█████▋ | 19499/34343 [3:21:32<52:41, 4.70it/s]
Epoch 1 Batch 19500 loss: 2.176616668701172
Epoch 1/2: 57%|█████▋ | 19500/34343 [3:21:32<1:23:06, 2.98it/s]
Closest words to the center word scripture: ['scripture', 'jesus', 'testament', 'judaism', 'scriptures', 'prophet', 'christianity', 'baptism', 'tanakh', 'teachings']
Epoch 1/2: 57%|█████▋ | 19599/34343 [3:22:07<51:53, 4.74it/s]
Epoch 1 Batch 19600 loss: 2.1506729125976562
Epoch 1/2: 57%|█████▋ | 19600/34343 [3:22:12<7:41:34, 1.88s/it]
Closest words to the center word catholic: ['catholic', 'orthodox', 'lutheran', 'anglican', 'churches', 'church', 'episcopal', 'communion', 'protestant', 'denominations']
Epoch 1/2: 57%|█████▋ | 19699/34343 [3:22:52<58:26, 4.18it/s]
Epoch 1 Batch 19700 loss: 2.2006030082702637
Epoch 1/2: 57%|█████▋ | 19700/34343 [3:22:53<1:30:42, 2.69it/s]
Closest words to the center word term: ['term', 'noun', 'pejorative', 'adjective', 'word', 'usage', 'derogatory', 'declension', 'synonym', 'verb']
Epoch 1/2: 58%|█████▊ | 19799/34343 [3:23:37<52:12, 4.64it/s]
Epoch 1 Batch 19800 loss: 2.1924495697021484
Epoch 1/2: 58%|█████▊ | 19800/34343 [3:23:37<1:28:34, 2.74it/s]
Closest words to the center word exchange: ['kwh', 'exchange', 'gwh', 'unpaved', 'runways', 'expenditures', 'imports', 'telephones', 'capita', 'income']
Epoch 1/2: 58%|█████▊ | 19899/34343 [3:24:21<53:40, 4.49it/s]
Epoch 1 Batch 19900 loss: 2.175184965133667
Epoch 1/2: 58%|█████▊ | 19900/34343 [3:24:22<1:23:48, 2.87it/s]
Closest words to the center word immigrant: ['immigrant', 'novelists', 'ethnic', 'entertainers', 'naturalized', 'hispanic', 'indigenous', 'immigrants', 'minority', 'lithuanians']
Epoch 1/2: 58%|█████▊ | 19999/34343 [3:25:13<1:38:46, 2.42it/s]
Epoch 1 Batch 20000 loss: 2.192317008972168
Epoch 1/2: 58%|█████▊ | 20000/34343 [3:25:14<1:53:43, 2.10it/s]
Closest words to the center word downtown: ['downtown', 'township', 'devry', 'erie', 'urbana', 'nfc', 'lansing', 'county', 'afc', 'abet']
Epoch 1/2: 59%|█████▊ | 20099/34343 [3:25:57<1:00:47, 3.91it/s]
Epoch 1 Batch 20100 loss: 2.1599984169006348
Epoch 1/2: 59%|█████▊ | 20100/34343 [3:25:58<1:27:51, 2.70it/s]
Closest words to the center word four: ['gwh', 'cyg', 'grt', 'kwh', 'twh', 'unpaved', 'pngimage', 'pmid', 'jul', 'runways']
Epoch 1/2: 59%|█████▉ | 20199/34343 [3:26:42<49:56, 4.72it/s]
Epoch 1 Batch 20200 loss: 2.2375783920288086
Epoch 1/2: 59%|█████▉ | 20200/34343 [3:26:42<1:20:05, 2.94it/s]
Closest words to the center word after: ['after', 'before', 'months', 'shortly', 'grt', 'during', 'lasted', 'leap', 'thereafter', 'ottoman']
Epoch 1/2: 59%|█████▉ | 20299/34343 [3:27:25<49:14, 4.75it/s]
Epoch 1 Batch 20300 loss: 2.1636946201324463
Epoch 1/2: 59%|█████▉ | 20300/34343 [3:27:26<1:19:07, 2.96it/s]
Closest words to the center word layer: ['layer', 'intelsat', 'ifrcs', 'iom', 'icrm', 'ozone', 'ifc', 'ifad', 'tanker', 'gwh']
Epoch 1/2: 59%|█████▉ | 20399/34343 [3:28:18<2:50:54, 1.36it/s]
Epoch 1 Batch 20400 loss: 2.1505420207977295
Epoch 1/2: 59%|█████▉ | 20400/34343 [3:28:19<3:12:03, 1.21it/s]
Closest words to the center word automobile: ['kwh', 'gwh', 'icrm', 'ifrcs', 'ifc', 'finalist', 'iom', 'pngimage', 'ifad', 'mjs']
Epoch 1/2: 60%|█████▉ | 20499/34343 [3:29:02<55:40, 4.14it/s]
Epoch 1 Batch 20500 loss: 2.1120963096618652
Epoch 1/2: 60%|█████▉ | 20500/34343 [3:29:03<1:23:43, 2.76it/s]
Closest words to the center word wives: ['wives', 'daughters', 'eldest', 'sons', 'prophecies', 'pregnant', 'niece', 'elector', 'heirs', 'remarried']
Epoch 1/2: 60%|█████▉ | 20599/34343 [3:29:44<48:07, 4.76it/s]
Epoch 1 Batch 20600 loss: 2.2029638290405273
Epoch 1/2: 60%|█████▉ | 20600/34343 [3:29:44<1:17:44, 2.95it/s]
Closest words to the center word set: ['topological', 'morphism', 'set', 'morphisms', 'countably', 'finite', 'homomorphism', 'subset', 'infty', 'countable']
Epoch 1/2: 60%|██████ | 20699/34343 [3:30:34<47:55, 4.74it/s]
Epoch 1 Batch 20700 loss: 2.179687261581421
Epoch 1/2: 60%|██████ | 20700/34343 [3:30:44<12:17:34, 3.24s/it]
Closest words to the center word classical: ['classical', 'baroque', 'analytic', 'liberalism', 'composers', 'philosophers', 'renaissance', 'individualist', 'genres', 'physics']
Epoch 1/2: 61%|██████ | 20799/34343 [3:31:28<2:23:32, 1.57it/s]
Epoch 1 Batch 20800 loss: 2.1586945056915283
Epoch 1/2: 61%|██████ | 20800/34343 [3:31:28<2:26:01, 1.55it/s]
Closest words to the center word main: ['main', 'telephones', 'demographics', 'factbook', 'bissau', 'faso', 'verde', 'windward', 'federated', 'comoros']
Epoch 1/2: 61%|██████ | 20899/34343 [3:32:08<49:56, 4.49it/s]
Epoch 1 Batch 20900 loss: 2.179399013519287
Epoch 1/2: 61%|██████ | 20900/34343 [3:32:09<1:20:35, 2.78it/s]
Closest words to the center word st: ['st', 'nd', 'saint', 'afc', 'nfc', 'earl', 'agave', 'rd', 'th', 'yoannis']
Epoch 1/2: 61%|██████ | 20999/34343 [3:32:47<47:55, 4.64it/s]
Epoch 1 Batch 21000 loss: 2.194061279296875
Epoch 1/2: 61%|██████ | 21000/34343 [3:32:48<1:24:07, 2.64it/s]
Closest words to the center word entirely: ['entirely', 'evenly', 'completely', 'exclusively', 'supplanted', 'universally', 'intelligible', 'falsifiable', 'axiomatic', 'identical']
Epoch 1/2: 61%|██████▏ | 21099/34343 [3:33:47<9:11:50, 2.50s/it]
Epoch 1 Batch 21100 loss: 2.1672215461730957
Epoch 1/2: 61%|██████▏ | 21100/34343 [3:33:48<7:13:04, 1.96s/it]
Closest words to the center word griffin: ['footballer', 'cricketer', 'politician', 'actor', 'songwriter', 'wrestler', 'philanthropist', 'pianist', 'actress', 'swimmer']
Epoch 1/2: 62%|██████▏ | 21199/34343 [3:34:28<1:18:32, 2.79it/s]
Epoch 1 Batch 21200 loss: 2.168684720993042
Epoch 1/2: 62%|██████▏ | 21200/34343 [3:34:29<1:40:58, 2.17it/s]
Closest words to the center word but: ['but', 'falsifiable', 'universally', 'though', 'necessarily', 'countably', 'happen', 'supplanted', 'gregorian', 'because']
Epoch 1/2: 62%|██████▏ | 21299/34343 [3:35:07<48:27, 4.49it/s]
Epoch 1 Batch 21300 loss: 2.2020010948181152
Epoch 1/2: 62%|██████▏ | 21300/34343 [3:35:08<1:14:56, 2.90it/s]
Closest words to the center word genres: ['genres', 'singers', 'composers', 'songwriters', 'styles', 'westerns', 'jazz', 'compositions', 'musical', 'themes']
Epoch 1/2: 62%|██████▏ | 21399/34343 [3:35:48<45:23, 4.75it/s]
Epoch 1 Batch 21400 loss: 2.167635202407837
Epoch 1/2: 62%|██████▏ | 21400/34343 [3:35:48<1:14:18, 2.90it/s]
Closest words to the center word both: ['both', 'various', 'faiths', 'many', 'several', 'vested', 'pluriform', 'intelligible', 'unicellular', 'incomprehensible']
Epoch 1/2: 63%|██████▎ | 21499/34343 [3:36:29<4:33:00, 1.28s/it]
Epoch 1 Batch 21500 loss: 2.1763830184936523
Epoch 1/2: 63%|██████▎ | 21500/34343 [3:36:30<3:49:15, 1.07s/it]
Closest words to the center word anka: ['pngimage', 'footballer', 'cyg', 'cricketer', 'jul', 'swimmer', 'finalist', 'laureate', 'bwv', 'eug']
Epoch 1/2: 63%|██████▎ | 21599/34343 [3:37:11<56:37, 3.75it/s]
Epoch 1 Batch 21600 loss: 2.194138526916504
Epoch 1/2: 63%|██████▎ | 21600/34343 [3:37:11<1:19:39, 2.67it/s]
Closest words to the center word however: ['gwh', 'argue', 'however', 'kwh', 'believe', 'lifes', 'falsifiable', 'though', 'necessarily', 'vested']
Epoch 1/2: 63%|██████▎ | 21699/34343 [3:37:54<45:08, 4.67it/s]
Epoch 1 Batch 21700 loss: 2.184887409210205
Epoch 1/2: 63%|██████▎ | 21700/34343 [3:37:55<1:08:40, 3.07it/s]
Closest words to the center word than: ['than', 'lifes', 'slightly', 'less', 'expectancy', 'millimeters', 'gwh', 'more', 'faster', 'considerably']
Epoch 1/2: 63%|██████▎ | 21799/34343 [3:38:42<44:36, 4.69it/s]
Epoch 1 Batch 21800 loss: 2.1667675971984863
Epoch 1/2: 63%|██████▎ | 21800/34343 [3:38:42<1:08:38, 3.05it/s]
Closest words to the center word even: ['even', 'lifes', 'expensive', 'noticeable', 'worse', 'perceive', 'consuming', 'grt', 'occur', 'tolerated']
Epoch 1/2: 64%|██████▍ | 21899/34343 [3:39:35<2:30:40, 1.38it/s]
Epoch 1 Batch 21900 loss: 2.1998085975646973
Epoch 1/2: 64%|██████▍ | 21900/34343 [3:39:36<2:21:39, 1.46it/s]
Closest words to the center word most: ['most', 'more', 'less', 'lifes', 'many', 'earliest', 'largest', 'highly', 'populous', 'especially']
Epoch 1/2: 64%|██████▍ | 21999/34343 [3:40:12<45:34, 4.51it/s]
Epoch 1 Batch 22000 loss: 2.1783924102783203
Epoch 1/2: 64%|██████▍ | 22000/34343 [3:40:13<1:12:41, 2.83it/s]
Closest words to the center word land: ['arable', 'land', 'irrigated', 'pastures', 'km', 'sq', 'unpaved', 'runways', 'kilometers', 'hydropower']
Epoch 1/2: 64%|██████▍ | 22099/34343 [3:40:54<43:41, 4.67it/s]
Epoch 1 Batch 22100 loss: 2.199709415435791
Epoch 1/2: 64%|██████▍ | 22100/34343 [3:40:55<1:07:33, 3.02it/s]
Closest words to the center word descended: ['descended', 'aryans', 'indo', 'slavic', 'assimilated', 'germanic', 'borrowed', 'aramaic', 'inhabited', 'migrated']
Epoch 1/2: 65%|██████▍ | 22199/34343 [3:41:38<43:12, 4.68it/s]
Epoch 1 Batch 22200 loss: 2.1871800422668457
Epoch 1/2: 65%|██████▍ | 22200/34343 [3:41:38<1:07:47, 2.99it/s]
Closest words to the center word then: ['otimes', 'infty', 'cdots', 'rangle', 'operatorname', 'qquad', 'leq', 'ldots', 'cdot', 'bigg']
Epoch 1/2: 65%|██████▍ | 22299/34343 [3:42:30<1:14:40, 2.69it/s]
Epoch 1 Batch 22300 loss: 2.1602892875671387
Epoch 1/2: 65%|██████▍ | 22300/34343 [3:42:31<1:29:12, 2.25it/s]
Closest words to the center word th: ['th', 'nd', 'nfc', 'nineteenth', 'rd', 'afc', 'gwh', 'twentieth', 'seventeenth', 'sixteenth']
Epoch 1/2: 65%|██████▌ | 22399/34343 [3:43:19<59:56, 3.32it/s]
Epoch 1 Batch 22400 loss: 2.1497557163238525
Epoch 1/2: 65%|██████▌ | 22400/34343 [3:43:19<1:20:30, 2.47it/s]
Closest words to the center word broadly: ['broadly', 'nouns', 'linguists', 'goidelic', 'fundamentalist', 'heretical', 'dialects', 'phonology', 'dravidian', 'urdu']
Epoch 1/2: 66%|██████▌ | 22499/34343 [3:44:05<41:26, 4.76it/s]
Epoch 1 Batch 22500 loss: 2.182007312774658
Epoch 1/2: 66%|██████▌ | 22500/34343 [3:44:05<1:04:32, 3.06it/s]
Closest words to the center word nation: ['populous', 'republic', 'nation', 'legislature', 'bicameral', 'timor', 'territory', 'subcontinent', 'factbook', 'macedonia']
Epoch 1/2: 66%|██████▌ | 22599/34343 [3:44:57<1:35:55, 2.04it/s]
Epoch 1 Batch 22600 loss: 2.1575498580932617
Epoch 1/2: 66%|██████▌ | 22600/34343 [3:44:58<1:46:26, 1.84it/s]
Closest words to the center word all: ['all', 'abelian', 'morphisms', 'integers', 'identical', 'reals', 'various', 'finite', 'many', 'countably']
Epoch 1/2: 66%|██████▌ | 22699/34343 [3:45:41<1:04:36, 3.00it/s]
Epoch 1 Batch 22700 loss: 2.166353702545166
Epoch 1/2: 66%|██████▌ | 22700/34343 [3:45:41<1:21:13, 2.39it/s]
Closest words to the center word n: ['cdots', 'cdot', 'otimes', 'rightarrow', 'qquad', 'leq', 'mathrm', 'frac', 'ldots', 'operatorname']
Epoch 1/2: 66%|██████▋ | 22799/34343 [3:46:24<41:33, 4.63it/s]
Epoch 1 Batch 22800 loss: 2.1599996089935303
Epoch 1/2: 66%|██████▋ | 22800/34343 [3:46:24<1:04:53, 2.96it/s]
Closest words to the center word century: ['century', 'centuries', 'nfc', 'afc', 'bc', 'nineteenth', 'bce', 'dynasty', 'philosophers', 'th']
Epoch 1/2: 67%|██████▋ | 22899/34343 [3:47:20<40:37, 4.69it/s]
Epoch 1 Batch 22900 loss: 2.165294885635376
Epoch 1/2: 67%|██████▋ | 22900/34343 [3:47:20<1:02:53, 3.03it/s]
Closest words to the center word qquad: ['qquad', 'cdot', 'cdots', 'otimes', 'frac', 'mathbf', 'leq', 'rangle', 'ldots', 'mathrm']
Epoch 1/2: 67%|██████▋ | 22999/34343 [3:48:13<2:27:26, 1.28it/s]
Epoch 1 Batch 23000 loss: 2.1681160926818848
Epoch 1/2: 67%|██████▋ | 23000/34343 [3:48:14<2:22:11, 1.33it/s]
Closest words to the center word organization: ['ifrcs', 'ifc', 'iom', 'unido', 'unctad', 'ifad', 'opcw', 'ilo', 'upu', 'iho']
Epoch 1/2: 67%|██████▋ | 23099/34343 [3:49:02<46:25, 4.04it/s]
Epoch 1 Batch 23100 loss: 2.163196325302124
Epoch 1/2: 67%|██████▋ | 23100/34343 [3:49:02<1:10:34, 2.66it/s]
Closest words to the center word could: ['could', 'can', 'should', 'would', 'might', 'must', 'shall', 'will', 'wouldn', 'did']
Epoch 1/2: 68%|██████▊ | 23199/34343 [3:49:45<41:47, 4.44it/s]
Epoch 1 Batch 23200 loss: 2.1257312297821045
Epoch 1/2: 68%|██████▊ | 23200/34343 [3:49:46<1:03:32, 2.92it/s]
Closest words to the center word situation: ['situation', 'pluriform', 'vested', 'recession', 'impose', 'coercion', 'coup', 'laissez', 'regimes', 'restructuring']
Epoch 1/2: 68%|██████▊ | 23299/34343 [3:50:34<38:57, 4.72it/s]
Epoch 1 Batch 23300 loss: 2.1690590381622314
Epoch 1/2: 68%|██████▊ | 23300/34343 [3:50:34<1:00:40, 3.03it/s]
Closest words to the center word has: ['has', 'had', 'have', 'having', 'pluriform', 'ifrcs', 'been', 'ifc', 'ifad', 'enjoys']
Epoch 1/2: 68%|██████▊ | 23399/34343 [3:51:32<2:22:20, 1.28it/s]
Epoch 1 Batch 23400 loss: 2.1786019802093506
Epoch 1/2: 68%|██████▊ | 23400/34343 [3:51:33<2:12:50, 1.37it/s]
Closest words to the center word see: ['see', 'list', 'disambiguation', 'newnode', 'est', 'topics', 'wtoo', 'redirects', 'wmo', 'ifrcs']
Epoch 1/2: 68%|██████▊ | 23499/34343 [3:52:33<43:18, 4.17it/s]
Epoch 1 Batch 23500 loss: 2.1621744632720947
Epoch 1/2: 68%|██████▊ | 23500/34343 [3:52:34<1:04:50, 2.79it/s]
Closest words to the center word heard: ['heard', 'sorry', 'wouldn', 'loved', 'tonight', 'couldn', 'cried', 'replied', 'll', 'hadn']
Epoch 1/2: 69%|██████▊ | 23599/34343 [3:53:22<38:29, 4.65it/s]
Epoch 1 Batch 23600 loss: 2.185946464538574
Epoch 1/2: 69%|██████▊ | 23600/34343 [3:53:23<59:35, 3.00it/s]
Closest words to the center word observations: ['observations', 'relativity', 'assumptions', 'aether', 'planets', 'gravitational', 'galaxies', 'diffraction', 'findable', 'mechanics']
Epoch 1/2: 69%|██████▉ | 23699/34343 [3:54:27<14:50:07, 5.02s/it]
Epoch 1 Batch 23700 loss: 2.178269386291504
Epoch 1/2: 69%|██████▉ | 23700/34343 [3:54:27<10:55:07, 3.69s/it]
Closest words to the center word people: ['people', 'births', 'albanians', 'jews', 'refugees', 'americans', 'nationality', 'immigrants', 'africans', 'citizens']
Epoch 1/2: 69%|██████▉ | 23799/34343 [3:55:17<1:07:02, 2.62it/s]
Epoch 1 Batch 23800 loss: 2.169729709625244
Epoch 1/2: 69%|██████▉ | 23800/34343 [3:55:18<1:30:42, 1.94it/s]
Closest words to the center word game: ['game', 'games', 'console', 'nintendo', 'playstation', 'championship', 'consoles', 'playoff', 'nfc', 'afc']
Epoch 1/2: 70%|██████▉ | 23899/34343 [3:56:25<38:16, 4.55it/s]
Epoch 1 Batch 23900 loss: 2.174274444580078
Epoch 1/2: 70%|██████▉ | 23900/34343 [3:56:26<57:46, 3.01it/s]
Closest words to the center word minister: ['minister', 'prime', 'deputy', 'ministers', 'cdu', 'chancellor', 'boutros', 'attlee', 'secretary', 'president']
Epoch 1/2: 70%|██████▉ | 23999/34343 [3:57:19<37:32, 4.59it/s]
Epoch 1 Batch 24000 loss: 2.1914472579956055
Epoch 1/2: 70%|██████▉ | 24000/34343 [3:57:20<59:25, 2.90it/s]
Closest words to the center word known: ['known', 'referred', 'regarded', 'agave', 'classified', 'suited', 'classed', 'described', 'abbreviated', 'argumentum']
Epoch 1/2: 70%|███████ | 24099/34343 [3:58:33<7:27:52, 2.62s/it]
Epoch 1 Batch 24100 loss: 2.1623618602752686
Epoch 1/2: 70%|███████ | 24100/34343 [3:58:34<5:44:44, 2.02s/it]
Closest words to the center word the: ['pluriform', 'the', 'nfc', 'ifrcs', 'vernal', 'icrm', 'ifc', 'afc', 'intelsat', 'desertification']
Epoch 1/2: 70%|███████ | 24199/34343 [3:59:34<43:35, 3.88it/s]
Epoch 1 Batch 24200 loss: 2.130772352218628
Epoch 1/2: 70%|███████ | 24200/34343 [3:59:34<1:01:35, 2.74it/s]
Closest words to the center word left: ['left', 'rangle', 'otimes', 'cdots', 'cdot', 'frac', 'mathbf', 'operatorname', 'rang', 'right']
Epoch 1/2: 71%|███████ | 24299/34343 [4:00:27<37:45, 4.43it/s]
Epoch 1 Batch 24300 loss: 2.1426546573638916
Epoch 1/2: 71%|███████ | 24300/34343 [4:00:28<1:06:34, 2.51it/s]
Closest words to the center word grover: ['township', 'footballer', 'earl', 'leiserson', 'cricketer', 'viscount', 'finalist', 'ssn', 'laureate', 'cyg']
Epoch 1/2: 71%|███████ | 24399/34343 [4:01:32<35:22, 4.68it/s]
Epoch 1 Batch 24400 loss: 2.164360523223877
Epoch 1/2: 71%|███████ | 24400/34343 [4:01:33<57:52, 2.86it/s]
Closest words to the center word catholics: ['catholics', 'orthodox', 'denominations', 'christians', 'churches', 'theologians', 'anglicans', 'protestants', 'protestant', 'bishops']
Epoch 1/2: 71%|███████▏ | 24499/34343 [4:02:38<1:34:36, 1.73it/s]
Epoch 1 Batch 24500 loss: 2.15714693069458
Epoch 1/2: 71%|███████▏ | 24500/34343 [4:02:39<1:36:26, 1.70it/s]
Closest words to the center word after: ['after', 'before', 'shortly', 'months', 'during', 'afterwards', 'lasted', 'thereafter', 'grt', 'abdur']
Epoch 1/2: 72%|███████▏ | 24599/34343 [4:03:26<37:17, 4.35it/s]
Epoch 1 Batch 24600 loss: 2.1690213680267334
Epoch 1/2: 72%|███████▏ | 24600/34343 [4:03:27<1:00:02, 2.70it/s]
Closest words to the center word others: ['others', 'agnostics', 'psychologists', 'scholars', 'neopagans', 'masculists', 'atheists', 'sects', 'unido', 'feminists']
Epoch 1/2: 72%|███████▏ | 24699/34343 [4:04:25<34:29, 4.66it/s]
Epoch 1 Batch 24700 loss: 2.1629137992858887
Epoch 1/2: 72%|███████▏ | 24700/34343 [4:04:26<57:08, 2.81it/s]
Closest words to the center word history: ['history', 'demographics', 'allafrica', 'factbook', 'geography', 'federated', 'timeline', 'barbuda', 'topics', 'archaeology']
Epoch 1/2: 72%|███████▏ | 24799/34343 [4:05:37<8:46:35, 3.31s/it]
Epoch 1 Batch 24800 loss: 2.1606433391571045
Epoch 1/2: 72%|███████▏ | 24800/34343 [4:05:38<6:41:02, 2.52s/it]
Closest words to the center word tao: ['tao', 'tiberian', 'otimes', 'ching', 'landsmannschaft', 'nevi', 'factum', 'ctus', 'infinitive', 'polskiej']
Epoch 1/2: 73%|███████▎ | 24899/34343 [4:06:36<1:05:32, 2.40it/s]
Epoch 1 Batch 24900 loss: 2.2006969451904297
Epoch 1/2: 73%|███████▎ | 24900/34343 [4:06:37<1:13:43, 2.13it/s]
Closest words to the center word criminal: ['criminal', 'enforcement', 'tribunal', 'unido', 'crimes', 'jurisdiction', 'appellate', 'liability', 'defendant', 'judicial']
Epoch 1/2: 73%|███████▎ | 24999/34343 [4:07:33<34:59, 4.45it/s]
Epoch 1 Batch 25000 loss: 2.1721980571746826
Epoch 1/2: 73%|███████▎ | 25000/34343 [4:07:34<57:53, 2.69it/s]
Closest words to the center word and: ['ifrcs', 'ifad', 'kwh', 'gwh', 'ifc', 'icrm', 'unctad', 'ibrd', 'opcw', 'icftu']
Epoch 1/2: 73%|███████▎ | 25099/34343 [4:08:22<32:50, 4.69it/s]
Epoch 1 Batch 25100 loss: 2.1649208068847656
Epoch 1/2: 73%|███████▎ | 25100/34343 [4:08:22<53:48, 2.86it/s]
Closest words to the center word vfl: ['nfc', 'afc', 'playoffs', 'championship', 'nfl', 'divisional', 'playoff', 'finals', 'steelers', 'broncos']
Epoch 1/2: 73%|███████▎ | 25199/34343 [4:09:34<6:38:34, 2.62s/it]
Epoch 1 Batch 25200 loss: 2.140643358230591
Epoch 1/2: 73%|███████▎ | 25200/34343 [4:09:34<5:11:34, 2.04s/it]
Closest words to the center word one: ['gwh', 'kwh', 'cyg', 'grt', 'twh', 'pngimage', 'jul', 'unpaved', 'pmid', 'hbk']
Epoch 1/2: 74%|███████▎ | 25299/34343 [4:10:41<57:17, 2.63it/s]
Epoch 1 Batch 25300 loss: 2.167630910873413
Epoch 1/2: 74%|███████▎ | 25300/34343 [4:10:41<1:11:59, 2.09it/s]
Closest words to the center word some: ['some', 'many', 'various', 'several', 'certain', 'anecdotal', 'hundreds', 'lifes', 'most', 'faiths']
Epoch 1/2: 74%|███████▍ | 25399/34343 [4:11:50<33:00, 4.52it/s]
Epoch 1 Batch 25400 loss: 2.109294891357422
Epoch 1/2: 74%|███████▍ | 25400/34343 [4:11:50<53:27, 2.79it/s]
Closest words to the center word added: ['added', 'bits', 'gwh', 'kwh', 'telephones', 'twh', 'unpaved', 'cyg', 'grt', 'demographics']
Epoch 1/2: 74%|███████▍ | 25499/34343 [4:12:56<31:12, 4.72it/s]
Epoch 1 Batch 25500 loss: 2.1761088371276855
Epoch 1/2: 74%|███████▍ | 25500/34343 [4:12:57<52:49, 2.79it/s]
Closest words to the center word beginner: ['beginner', 'findable', 'tutorials', 'karaoke', 'brainfuck', 'venues', 'downloads', 'databases', 'lossless', 'lossy']
Epoch 1/2: 75%|███████▍ | 25599/34343 [4:14:13<4:34:06, 1.88s/it]
Epoch 1 Batch 25600 loss: 2.1636462211608887
Epoch 1/2: 75%|███████▍ | 25600/34343 [4:14:14<3:43:12, 1.53s/it]
Closest words to the center word the: ['the', 'nfc', 'pluriform', 'vernal', 'populous', 'desertification', 'vested', 'scrimmage', 'bicameral', 'ifrcs']
Epoch 1/2: 75%|███████▍ | 25699/34343 [4:15:16<39:02, 3.69it/s]
Epoch 1 Batch 25700 loss: 2.1753110885620117
Epoch 1/2: 75%|███████▍ | 25700/34343 [4:15:16<53:50, 2.68it/s]
Closest words to the center word property: ['property', 'pluriform', 'ethical', 'monetary', 'welfare', 'equality', 'liability', 'intellectual', 'rights', 'profit']
Epoch 1/2: 75%|███████▌ | 25799/34343 [4:16:05<30:36, 4.65it/s]
Epoch 1 Batch 25800 loss: 2.143805503845215
Epoch 1/2: 75%|███████▌ | 25800/34343 [4:16:06<46:22, 3.07it/s]
Closest words to the center word six: ['gwh', 'kwh', 'grt', 'cyg', 'pngimage', 'twh', 'unpaved', 'mjs', 'pmid', 'jul']
Epoch 1/2: 75%|███████▌ | 25899/34343 [4:17:04<29:39, 4.74it/s]
Epoch 1 Batch 25900 loss: 2.1542530059814453
Epoch 1/2: 75%|███████▌ | 25900/34343 [4:17:05<46:21, 3.04it/s]
Closest words to the center word were: ['were', 'are', 'camps', 'persecuted', 'romans', 'been', 'serbs', 'brutally', 'greeks', 'mongols']
Epoch 1/2: 76%|███████▌ | 25999/34343 [4:18:06<1:58:38, 1.17it/s]
Epoch 1 Batch 26000 loss: 2.15213680267334
Epoch 1/2: 76%|███████▌ | 26000/34343 [4:18:07<1:49:01, 1.28it/s]
Closest words to the center word reject: ['reject', 'laissez', 'ethical', 'egoism', 'reconstructionist', 'fundamentalists', 'naturalism', 'deny', 'relativism', 'anarcho']
Epoch 1/2: 76%|███████▌ | 26099/34343 [4:19:15<35:07, 3.91it/s]
Epoch 1 Batch 26100 loss: 2.172351837158203
Epoch 1/2: 76%|███████▌ | 26100/34343 [4:19:16<51:11, 2.68it/s]
Closest words to the center word supported: ['unido', 'supported', 'unctad', 'pluriform', 'upu', 'wmo', 'wipo', 'criticized', 'exercised', 'vested']
Epoch 1/2: 76%|███████▋ | 26199/34343 [4:20:09<28:37, 4.74it/s]
Epoch 1 Batch 26200 loss: 2.1398873329162598
Epoch 1/2: 76%|███████▋ | 26200/34343 [4:20:10<46:27, 2.92it/s]
Closest words to the center word often: ['often', 'commonly', 'sometimes', 'interchangeably', 'widely', 'generally', 'frequently', 'synonymously', 'usually', 'chemically']
Epoch 1/2: 77%|███████▋ | 26299/34343 [4:21:13<28:15, 4.74it/s]
Epoch 1 Batch 26300 loss: 2.1213347911834717
Epoch 1/2: 77%|███████▋ | 26300/34343 [4:21:30<11:31:49, 5.16s/it]
Closest words to the center word noblemen: ['noblemen', 'nobles', 'brutally', 'bolsheviks', 'vassals', 'persecuted', 'fled', 'persecutions', 'pashtun', 'raped']
Epoch 1/2: 77%|███████▋ | 26399/34343 [4:22:28<1:00:32, 2.19it/s]
Epoch 1 Batch 26400 loss: 2.1519837379455566
Epoch 1/2: 77%|███████▋ | 26400/34343 [4:22:29<1:09:46, 1.90it/s]
Closest words to the center word at: ['at', 'devry', 'graduate', 'abet', 'near', 'ssn', 'utc', 'hochschule', 'attended', 'urbana']
Epoch 1/2: 77%|███████▋ | 26499/34343 [4:23:38<28:52, 4.53it/s]
Epoch 1 Batch 26500 loss: 2.1253271102905273
Epoch 1/2: 77%|███████▋ | 26500/34343 [4:23:39<45:35, 2.87it/s]
Closest words to the center word k: ['otimes', 'cdot', 'rightarrow', 'cdots', 'leq', 'operatorname', 'qquad', 'ldots', 'rangle', 'mathrm']
Epoch 1/2: 77%|███████▋ | 26599/34343 [4:24:44<27:19, 4.72it/s]
Epoch 1 Batch 26600 loss: 2.144522190093994
Epoch 1/2: 77%|███████▋ | 26600/34343 [4:24:45<46:49, 2.76it/s]
Closest words to the center word rex: ['tamarin', 'callithrix', 'marmoset', 'leiserson', 'cegep', 'wco', 'sieur', 'eulemur', 'eug', 'agave']
Epoch 1/2: 78%|███████▊ | 26699/34343 [4:26:10<7:26:30, 3.50s/it]
Epoch 1 Batch 26700 loss: 2.166740655899048
Epoch 1/2: 78%|███████▊ | 26700/34343 [4:26:11<5:37:01, 2.65s/it]
Closest words to the center word air: ['air', 'ifrcs', 'icrm', 'ifad', 'navy', 'ifc', 'opcw', 'missiles', 'pollution', 'iom']
Epoch 1/2: 78%|███████▊ | 26799/34343 [4:27:08<30:46, 4.09it/s]
Epoch 1 Batch 26800 loss: 2.105173110961914
Epoch 1/2: 78%|███████▊ | 26800/34343 [4:27:09<43:43, 2.88it/s]
Closest words to the center word word: ['word', 'kanji', 'declension', 'pronoun', 'sanskrit', 'alphabet', 'verb', 'hebrew', 'tiberian', 'transliteration']
Epoch 1/2: 78%|███████▊ | 26899/34343 [4:28:17<26:42, 4.64it/s]
Epoch 1 Batch 26900 loss: 2.165642023086548
Epoch 1/2: 78%|███████▊ | 26900/34343 [4:28:18<1:08:59, 1.80it/s]
Closest words to the center word its: ['its', 'their', 'ifrcs', 'telephones', 'ifad', 'our', 'depends', 'vested', 'iho', 'varies']
Epoch 1/2: 79%|███████▊ | 26999/34343 [4:29:10<26:29, 4.62it/s]
Epoch 1 Batch 27000 loss: 2.178239583969116
Epoch 1/2: 79%|███████▊ | 27000/34343 [4:29:10<41:04, 2.98it/s]
Closest words to the center word accessible: ['accessible', 'findable', 'lossy', 'apis', 'gprs', 'expensive', 'accessing', 'available', 'browsers', 'cheaper']
Epoch 1/2: 79%|███████▉ | 27099/34343 [4:30:30<1:32:48, 1.30it/s]
Epoch 1 Batch 27100 loss: 2.155221462249756
Epoch 1/2: 79%|███████▉ | 27100/34343 [4:30:30<1:27:15, 1.38it/s]
Closest words to the center word clergyman: ['clergyman', 'politician', 'statesman', 'theologian', 'novelist', 'laureate', 'philanthropist', 'cricketer', 'footballer', 'dramatist']
Epoch 1/2: 79%|███████▉ | 27199/34343 [4:31:32<29:56, 3.98it/s]
Epoch 1 Batch 27200 loss: 2.1478168964385986
Epoch 1/2: 79%|███████▉ | 27200/34343 [4:31:32<42:45, 2.78it/s]
Closest words to the center word as: ['as', 'argumentum', 'clavier', 'regarded', 'colloquially', 'agave', 'hominem', 'boutros', 'insofar', 'popularly']
Epoch 1/2: 79%|███████▉ | 27299/34343 [4:32:43<25:35, 4.59it/s]
Epoch 1 Batch 27300 loss: 2.148089647293091
Epoch 1/2: 79%|███████▉ | 27300/34343 [4:32:43<39:47, 2.95it/s]
Closest words to the center word rogers: ['comedian', 'hammett', 'actress', 'bandleader', 'lesh', 'mcvie', 'ronnie', 'coach', 'comedienne', 'actor']
Epoch 1/2: 80%|███████▉ | 27399/34343 [4:33:58<9:54:46, 5.14s/it]
Epoch 1 Batch 27400 loss: 2.1383790969848633
Epoch 1/2: 80%|███████▉ | 27400/34343 [4:33:58<7:17:52, 3.78s/it]
Closest words to the center word material: ['material', 'findable', 'cvd', 'rna', 'amplification', 'solvents', 'dioxide', 'molecules', 'eukaryotic', 'tissues']
Epoch 1/2: 80%|████████ | 27499/34343 [4:34:57<1:08:43, 1.66it/s]
Epoch 1 Batch 27500 loss: 2.1313536167144775
Epoch 1/2: 80%|████████ | 27500/34343 [4:34:57<1:09:04, 1.65it/s]
Closest words to the center word calls: ['newnode', 'findable', 'calls', 'asks', 'prev', 'asking', 'unido', 'wants', 'thank', 'requests']
Epoch 1/2: 80%|████████ | 27599/34343 [4:36:03<27:07, 4.14it/s]
Epoch 1 Batch 27600 loss: 2.1406517028808594
Epoch 1/2: 80%|████████ | 27600/34343 [4:36:04<40:19, 2.79it/s]
Closest words to the center word production: ['kwh', 'gwh', 'production', 'twh', 'commodities', 'textiles', 'imports', 'fuels', 'exports', 'electricity']
Epoch 1/2: 81%|████████ | 27699/34343 [4:37:07<23:49, 4.65it/s]
Epoch 1 Batch 27700 loss: 2.1324963569641113
Epoch 1/2: 81%|████████ | 27700/34343 [4:37:08<41:34, 2.66it/s]
Closest words to the center word chronicle: ['chronicle', 'nevi', 'mamre', 'mechon', 'hammadi', 'afc', 'nfc', 'dramatists', 'encyclop', 'tanakh']
Epoch 1/2: 81%|████████ | 27799/34343 [4:38:15<3:53:54, 2.14s/it]
Epoch 1 Batch 27800 loss: 2.1638875007629395
Epoch 1/2: 81%|████████ | 27800/34343 [4:38:16<3:06:28, 1.71s/it]
Closest words to the center word spoken: ['spoken', 'dialects', 'urdu', 'languages', 'slavic', 'speakers', 'bangla', 'afrikaans', 'dialect', 'hindi']
Epoch 1/2: 81%|████████ | 27899/34343 [4:39:18<51:57, 2.07it/s]
Epoch 1 Batch 27900 loss: 2.159383535385132
Epoch 1/2: 81%|████████ | 27900/34343 [4:39:18<59:29, 1.80it/s]
Closest words to the center word animation: ['animation', 'animated', 'anime', 'consoles', 'codecs', 'machinima', 'lossy', 'graphics', 'karaoke', 'lossless']
Epoch 1/2: 82%|████████▏ | 27999/34343 [4:40:27<24:06, 4.39it/s]
Epoch 1 Batch 28000 loss: 2.138845920562744
Epoch 1/2: 82%|████████▏ | 28000/34343 [4:40:27<38:53, 2.72it/s]
Closest words to the center word beginning: ['gregorian', 'beginning', 'cretaceous', 'leap', 'end', 'proleptic', 'triassic', 'outbreak', 'vernal', 'nineteenth']
Epoch 1/2: 82%|████████▏ | 28099/34343 [4:41:37<22:21, 4.66it/s]
Epoch 1 Batch 28100 loss: 2.157573699951172
Epoch 1/2: 82%|████████▏ | 28100/34343 [4:41:38<35:55, 2.90it/s]
Closest words to the center word k: ['otimes', 'cdot', 'cdots', 'leq', 'rightarrow', 'qquad', 'ldots', 'operatorname', 'infty', 'rangle']
Epoch 1/2: 82%|████████▏ | 28199/34343 [4:42:49<3:50:50, 2.25s/it]
Epoch 1 Batch 28200 loss: 2.166411876678467
Epoch 1/2: 82%|████████▏ | 28200/34343 [4:42:49<3:03:17, 1.79s/it]
Closest words to the center word super: ['afc', 'nfc', 'super', 'playoffs', 'playoff', 'divisional', 'kart', 'pngimage', 'bowl', 'steelers']
Epoch 1/2: 82%|████████▏ | 28299/34343 [4:43:49<35:29, 2.84it/s]
Epoch 1 Batch 28300 loss: 2.1673877239227295
Epoch 1/2: 82%|████████▏ | 28300/34343 [4:43:50<45:45, 2.20it/s]
Closest words to the center word by: ['by', 'ifrcs', 'ifc', 'icrm', 'ifad', 'agave', 'unctad', 'unido', 'ibrd', 'xaver']
Epoch 1/2: 83%|████████▎ | 28399/34343 [4:45:00<21:53, 4.53it/s]
Epoch 1 Batch 28400 loss: 2.122408390045166
Epoch 1/2: 83%|████████▎ | 28400/34343 [4:45:01<36:13, 2.73it/s]
Closest words to the center word out: ['out', 'down', 'up', 'off', 'away', 'scrimmage', 'prev', 'onto', 'reins', 'couldn']
Epoch 1/2: 83%|████████▎ | 28499/34343 [4:46:09<20:33, 4.74it/s]
Epoch 1 Batch 28500 loss: 2.1728084087371826
Epoch 1/2: 83%|████████▎ | 28500/34343 [4:46:09<34:36, 2.81it/s]
Closest words to the center word death: ['death', 'resurrection', 'expectancy', 'infant', 'tenji', 'imprisonment', 'mortality', 'birth', 'jehoram', 'sentenced']
Epoch 1/2: 83%|████████▎ | 28599/34343 [4:47:33<2:05:07, 1.31s/it]
Epoch 1 Batch 28600 loss: 2.1430716514587402
Epoch 1/2: 83%|████████▎ | 28600/34343 [4:47:34<1:48:30, 1.13s/it]
Closest words to the center word masters: ['nfc', 'masters', 'championships', 'championship', 'winners', 'champions', 'afc', 'champion', 'finals', 'wimbledon']
Epoch 1/2: 84%|████████▎ | 28699/34343 [4:48:45<26:15, 3.58it/s]
Epoch 1 Batch 28700 loss: 2.115452289581299
Epoch 1/2: 84%|████████▎ | 28700/34343 [4:48:45<38:24, 2.45it/s]
Closest words to the center word children: ['children', 'householder', 'couples', 'males', 'females', 'female', 'daughters', 'parents', 'male', 'adults']
Epoch 1/2: 84%|████████▍ | 28799/34343 [4:49:54<19:54, 4.64it/s]
Epoch 1 Batch 28800 loss: 2.215231418609619
Epoch 1/2: 84%|████████▍ | 28800/34343 [4:49:55<33:19, 2.77it/s]
Closest words to the center word iraq: ['iraq', 'saudi', 'syria', 'iraqi', 'kuwait', 'dinar', 'peacekeeping', 'gaza', 'hussein', 'lebanon']
Epoch 1/2: 84%|████████▍ | 28899/34343 [4:51:03<19:08, 4.74it/s]
Epoch 1 Batch 28900 loss: 2.143759250640869
Epoch 1/2: 84%|████████▍ | 28900/34343 [4:51:03<32:34, 2.78it/s]
Closest words to the center word salt: ['beets', 'broadleaf', 'cassava', 'salt', 'humid', 'limestone', 'subtropical', 'arable', 'citrus', 'gravel']
Epoch 1/2: 84%|████████▍ | 28999/34343 [4:52:27<1:09:25, 1.28it/s]
Epoch 1 Batch 29000 loss: 2.1738033294677734
Epoch 1/2: 84%|████████▍ | 29000/34343 [4:52:28<1:06:59, 1.33it/s]
Closest words to the center word the: ['the', 'nfc', 'pluriform', 'ifrcs', 'vernal', 'ifc', 'newnode', 'afc', 'scrimmage', 'nicaea']
Epoch 1/2: 85%|████████▍ | 29099/34343 [4:53:37<19:26, 4.50it/s]
Epoch 1 Batch 29100 loss: 2.130866289138794
Epoch 1/2: 85%|████████▍ | 29100/34343 [4:53:37<31:46, 2.75it/s]
Closest words to the center word whether: ['whether', 'falsifiable', 'subjective', 'ethical', 'countably', 'causal', 'cardinality', 'verifiable', 'normative', 'disprove']
Epoch 1/2: 85%|████████▌ | 29199/34343 [4:54:46<18:11, 4.71it/s]
Epoch 1 Batch 29200 loss: 2.167146682739258
Epoch 1/2: 85%|████████▌ | 29200/34343 [4:54:47<29:43, 2.88it/s]
Closest words to the center word wear: ['wear', 'pants', 'eat', 'wears', 'throw', 'tamarin', 'wore', 'wearing', 'dresses', 'dressing']
Epoch 1/2: 85%|████████▌ | 29299/34343 [4:56:10<6:56:10, 4.95s/it]
Epoch 1 Batch 29300 loss: 2.1464898586273193
Epoch 1/2: 85%|████████▌ | 29300/34343 [4:56:11<5:09:19, 3.68s/it]
Closest words to the center word canaan: ['assyria', 'canaan', 'persia', 'constantinople', 'ceded', 'conquered', 'judah', 'heraclius', 'sumer', 'flee']
Epoch 1/2: 86%|████████▌ | 29399/34343 [4:57:19<26:18, 3.13it/s]
Epoch 1 Batch 29400 loss: 2.1150240898132324
Epoch 1/2: 86%|████████▌ | 29400/34343 [4:57:20<34:01, 2.42it/s]
Closest words to the center word principal: ['principal', 'largest', 'ifad', 'vested', 'administrative', 'gangetic', 'main', 'leeward', 'primary', 'ifc']
Epoch 1/2: 86%|████████▌ | 29499/34343 [4:58:28<18:08, 4.45it/s]
Epoch 1 Batch 29500 loss: 2.1666815280914307
Epoch 1/2: 86%|████████▌ | 29500/34343 [4:58:28<30:55, 2.61it/s]
Closest words to the center word of: ['of', 'ifrcs', 'ifad', 'ifc', 'akan', 'icrm', 'wtoo', 'rajonas', 'nazarene', 'iom']
Epoch 1/2: 86%|████████▌ | 29599/34343 [4:59:38<16:56, 4.67it/s]
Epoch 1 Batch 29600 loss: 2.1527047157287598
Epoch 1/2: 86%|████████▌ | 29600/34343 [4:59:38<28:13, 2.80it/s]
Closest words to the center word a: ['a', 'pluriform', 'automorphism', 'morphism', 'cardinality', 'every', 'otimes', 'newnode', 'another', 'any']
Epoch 1/2: 86%|████████▋ | 29699/34343 [5:01:03<1:19:02, 1.02s/it]
Epoch 1 Batch 29700 loss: 2.139249324798584
Epoch 1/2: 86%|████████▋ | 29700/34343 [5:01:03<1:09:47, 1.11it/s]
Closest words to the center word canadian: ['canadian', 'footballer', 'american', 'ifrcs', 'cricketer', 'australian', 'kwh', 'ifc', 'laureate', 'comedian']
Epoch 1/2: 87%|████████▋ | 29799/34343 [5:02:10<20:47, 3.64it/s]
Epoch 1 Batch 29800 loss: 2.1743788719177246
Epoch 1/2: 87%|████████▋ | 29800/34343 [5:02:11<28:17, 2.68it/s]
Closest words to the center word metres: ['grt', 'gwh', 'metres', 'inches', 'meters', 'unpaved', 'twh', 'runways', 'ft', 'kilometers']
Epoch 1/2: 87%|████████▋ | 29899/34343 [5:03:19<17:31, 4.22it/s]
Epoch 1 Batch 29900 loss: 2.123094081878662
Epoch 1/2: 87%|████████▋ | 29900/34343 [5:03:20<26:14, 2.82it/s]
Closest words to the center word aka: ['pngimage', 'ifrcs', 'icrm', 'mjs', 'ifc', 'ifad', 'agave', 'icftu', 'ibrd', 'tamarin']
Epoch 1/2: 87%|████████▋ | 29999/34343 [5:04:28<15:29, 4.67it/s]
Epoch 1 Batch 30000 loss: 2.1571402549743652
Epoch 1/2: 87%|████████▋ | 30000/34343 [5:04:45<6:17:40, 5.22s/it]
Closest words to the center word singapore: ['opcw', 'chungcheong', 'barbuda', 'swaziland', 'icrm', 'busan', 'kwh', 'ifrcs', 'singapore', 'rupee']
Epoch 1/2: 88%|████████▊ | 30099/34343 [5:05:54<55:07, 1.28it/s]
Epoch 1 Batch 30100 loss: 2.1652884483337402
Epoch 1/2: 88%|████████▊ | 30100/34343 [5:05:55<52:38, 1.34it/s]
Closest words to the center word a: ['a', 'pluriform', 'automorphism', 'cardinality', 'every', 'morphism', 'otimes', 'monoid', 'another', 'newnode']
Epoch 1/2: 88%|████████▊ | 30199/34343 [5:07:02<17:32, 3.94it/s]
Epoch 1 Batch 30200 loss: 2.124663829803467
Epoch 1/2: 88%|████████▊ | 30200/34343 [5:07:03<25:40, 2.69it/s]
Closest words to the center word record: ['record', 'playoffs', 'grammy', 'nfl', 'mvp', 'singles', 'batting', 'playoff', 'championship', 'billboard']
Epoch 1/2: 88%|████████▊ | 30299/34343 [5:08:11<14:42, 4.58it/s]
Epoch 1 Batch 30300 loss: 2.1587517261505127
Epoch 1/2: 88%|████████▊ | 30300/34343 [5:08:12<23:10, 2.91it/s]
Closest words to the center word b: ['b', 'd', 'cyg', 'laureate', 'pngimage', 'footballer', 'physiologist', 'pmid', 'gwh', 'cdots']
Epoch 1/2: 89%|████████▊ | 30399/34343 [5:09:35<5:00:57, 4.58s/it]
Epoch 1 Batch 30400 loss: 2.1257636547088623
Epoch 1/2: 89%|████████▊ | 30400/34343 [5:09:35<3:43:47, 3.41s/it]
Closest words to the center word philo: ['yoannis', 'nevi', 'philo', 'patriarch', 'palaeologus', 'barnabas', 'epiphanius', 'ezekiel', 'isaiah', 'jesu']
Epoch 1/2: 89%|████████▉ | 30499/34343 [5:10:44<38:26, 1.67it/s]
Epoch 1 Batch 30500 loss: 2.1307451725006104
Epoch 1/2: 89%|████████▉ | 30500/34343 [5:10:45<41:19, 1.55it/s]
Closest words to the center word began: ['began', 'continued', 'started', 'helped', 'went', 'came', 'attempted', 'saw', 'coincided', 'culminated']
Epoch 1/2: 89%|████████▉ | 30599/34343 [5:11:52<14:43, 4.24it/s]
Epoch 1 Batch 30600 loss: 2.1571314334869385
Epoch 1/2: 89%|████████▉ | 30600/34343 [5:11:53<22:46, 2.74it/s]
Closest words to the center word field: ['field', 'magnetic', 'mathbf', 'dipole', 'topological', 'electromagnetic', 'vector', 'gravitational', 'automorphism', 'subfield']
Epoch 1/2: 89%|████████▉ | 30699/34343 [5:13:00<13:04, 4.65it/s]
Epoch 1 Batch 30700 loss: 2.15496826171875
Epoch 1/2: 89%|████████▉ | 30700/34343 [5:13:01<21:34, 2.81it/s]
Closest words to the center word fiction: ['fiction', 'fantasy', 'horror', 'novels', 'dystopian', 'fandom', 'science', 'illustrators', 'anthologies', 'mythos']
Epoch 1/2: 90%|████████▉ | 30799/34343 [5:14:25<3:27:37, 3.52s/it]
Epoch 1 Batch 30800 loss: 2.1584253311157227
Epoch 1/2: 90%|████████▉ | 30800/34343 [5:14:26<2:36:34, 2.65s/it]
Closest words to the center word ii: ['ii', 'iii', 'iv', 'palaeologus', 'yoannis', 'vii', 'anastasius', 'comnenus', 'jumaada', 'viii']
Epoch 1/2: 90%|████████▉ | 30899/34343 [5:15:33<23:17, 2.46it/s]
Epoch 1 Batch 30900 loss: 2.1477136611938477
Epoch 1/2: 90%|████████▉ | 30900/34343 [5:15:34<27:38, 2.08it/s]
Closest words to the center word held: ['held', 'elected', 'elections', 'vested', 'referendum', 'election', 'nfc', 'nominated', 'appointed', 'ecumenical']
Epoch 1/2: 90%|█████████ | 30999/34343 [5:16:41<12:17, 4.53it/s]
Epoch 1 Batch 31000 loss: 2.171220302581787
Epoch 1/2: 90%|█████████ | 31000/34343 [5:16:42<18:59, 2.93it/s]
Closest words to the center word consisted: ['consisted', 'consists', 'pluriform', 'consisting', 'consist', 'dwt', 'comprised', 'regiments', 'battalions', 'composed']
Epoch 1/2: 91%|█████████ | 31099/34343 [5:17:49<11:20, 4.76it/s]
Epoch 1 Batch 31100 loss: 2.148926258087158
Epoch 1/2: 91%|█████████ | 31100/34343 [5:17:50<25:37, 2.11it/s]
Closest words to the center word antonio: ['antonio', 'anh', 'cegep', 'universidad', 'bwv', 'footballer', 'icrm', 'eug', 'lez', 'rovere']
Epoch 1/2: 91%|█████████ | 31199/34343 [5:19:16<1:36:34, 1.84s/it]
Epoch 1 Batch 31200 loss: 2.142033338546753
Epoch 1/2: 91%|█████████ | 31200/34343 [5:19:17<1:18:24, 1.50s/it]
Closest words to the center word the: ['the', 'pluriform', 'ifrcs', 'vernal', 'nfc', 'newnode', 'ghats', 'outskirts', 'holocene', 'nabla']
Epoch 1/2: 91%|█████████ | 31299/34343 [5:20:25<16:37, 3.05it/s]
Epoch 1 Batch 31300 loss: 2.155806064605713
Epoch 1/2: 91%|█████████ | 31300/34343 [5:20:25<21:34, 2.35it/s]
Closest words to the center word is: ['is', 'exists', 'bijective', 'satisfies', 'contains', 'refers', 'depends', 'serves', 'approximates', 'was']
Epoch 1/2: 91%|█████████▏| 31399/34343 [5:21:33<10:29, 4.67it/s]
Epoch 1 Batch 31400 loss: 2.1606945991516113
Epoch 1/2: 91%|█████████▏| 31400/34343 [5:21:34<16:30, 2.97it/s]
Closest words to the center word camel: ['callithrix', 'equus', 'stenella', 'ferus', 'camel', 'ursus', 'mentha', 'tamarin', 'hamster', 'leontopithecus']
Epoch 1/2: 92%|█████████▏| 31499/34343 [5:22:41<09:57, 4.76it/s]
Epoch 1 Batch 31500 loss: 2.0854337215423584
Epoch 1/2: 92%|█████████▏| 31500/34343 [5:22:42<16:08, 2.94it/s]
Closest words to the center word occurred: ['occurred', 'lasted', 'erupted', 'outbreak', 'eruption', 'lasts', 'resulted', 'happened', 'pleistocene', 'existed']
Epoch 1/2: 92%|█████████▏| 31599/34343 [5:24:05<46:46, 1.02s/it]
Epoch 1 Batch 31600 loss: 2.163994073867798
Epoch 1/2: 92%|█████████▏| 31600/34343 [5:24:06<41:22, 1.11it/s]
Closest words to the center word for: ['for', 'ifrcs', 'ifad', 'newnode', 'iom', 'ifc', 'lossy', 'prev', 'lastnode', 'provide']
Epoch 1/2: 92%|█████████▏| 31699/34343 [5:25:14<10:00, 4.40it/s]
Epoch 1 Batch 31700 loss: 2.14137601852417
Epoch 1/2: 92%|█████████▏| 31700/34343 [5:25:15<15:09, 2.91it/s]
Closest words to the center word form: ['form', 'adjoint', 'subgroup', 'groupoid', 'pluriform', 'bilinear', 'mathfrak', 'approximant', 'covalent', 'conjugate']
Epoch 1/2: 93%|█████████▎| 31799/34343 [5:26:22<09:10, 4.62it/s]
Epoch 1 Batch 31800 loss: 2.1413497924804688
Epoch 1/2: 93%|█████████▎| 31800/34343 [5:26:23<14:10, 2.99it/s]
Closest words to the center word separate: ['separate', 'distinct', 'homomorphism', 'pluriform', 'different', 'functor', 'morphisms', 'homomorphisms', 'grouped', 'subnational']
Epoch 1/2: 93%|█████████▎| 31899/34343 [5:27:30<08:50, 4.61it/s]
Epoch 1 Batch 31900 loss: 2.151773691177368
Epoch 1/2: 93%|█████████▎| 31900/34343 [5:27:48<3:42:49, 5.47s/it]
Closest words to the center word ideological: ['ideological', 'egalitarianism', 'leninist', 'authoritarianism', 'authoritarian', 'ideology', 'marxism', 'socio', 'laissez', 'leninism']
Epoch 1/2: 93%|█████████▎| 31999/34343 [5:28:56<13:27, 2.90it/s]
Epoch 1 Batch 32000 loss: 2.17047119140625
Epoch 1/2: 93%|█████████▎| 32000/34343 [5:28:57<16:36, 2.35it/s]
Closest words to the center word their: ['their', 'its', 'your', 'our', 'her', 'his', 'respective', 'gesserit', 'themselves', 'my']
Epoch 1/2: 93%|█████████▎| 32099/34343 [5:30:04<08:23, 4.46it/s]
Epoch 1 Batch 32100 loss: 2.138092041015625
Epoch 1/2: 93%|█████████▎| 32100/34343 [5:30:05<13:01, 2.87it/s]
Closest words to the center word regime: ['regime', 'bolsheviks', 'coup', 'gorbachev', 'reforms', 'pluriform', 'commissar', 'junta', 'communist', 'perestroika']
Epoch 1/2: 94%|█████████▍| 32199/34343 [5:31:13<07:55, 4.51it/s]
Epoch 1 Batch 32200 loss: 2.1601781845092773
Epoch 1/2: 94%|█████████▍| 32200/34343 [5:31:13<12:08, 2.94it/s]
Closest words to the center word time: ['time', 'period', 'utc', 'distances', 'elapsed', 'moment', 'vernal', 'mhz', 'speeds', 'cardinality']
Epoch 1/2: 94%|█████████▍| 32299/34343 [5:32:37<44:22, 1.30s/it]
Epoch 1 Batch 32300 loss: 2.141155242919922
Epoch 1/2: 94%|█████████▍| 32300/34343 [5:32:37<37:25, 1.10s/it]
Closest words to the center word he: ['he', 'she', 'clytemnestra', 'gehrig', 'aegisthus', 'remarried', 'bogart', 'tenji', 'ribbentrop', 'bacall']
Epoch 1/2: 94%|█████████▍| 32399/34343 [5:33:46<09:52, 3.28it/s]
Epoch 1 Batch 32400 loss: 2.1982171535491943
Epoch 1/2: 94%|█████████▍| 32400/34343 [5:33:47<12:53, 2.51it/s]
Closest words to the center word secret: ['secret', 'wipo', 'unido', 'wmo', 'wtoo', 'wco', 'fbi', 'upu', 'wftu', 'defendant']
Epoch 1/2: 95%|█████████▍| 32499/34343 [5:34:55<06:45, 4.55it/s]
Epoch 1 Batch 32500 loss: 2.177432060241699
Epoch 1/2: 95%|█████████▍| 32500/34343 [5:34:56<10:21, 2.97it/s]
Closest words to the center word traditionally: ['traditionally', 'widely', 'popularly', 'historically', 'interchangeably', 'commonly', 'ethnically', 'heretical', 'fundamentalist', 'universally']
Epoch 1/2: 95%|█████████▍| 32599/34343 [5:36:02<06:10, 4.71it/s]
Epoch 1 Batch 32600 loss: 2.1100528240203857
Epoch 1/2: 95%|█████████▍| 32600/34343 [5:36:03<09:31, 3.05it/s]
Closest words to the center word immediately: ['immediately', 'shortly', 'resign', 'shuja', 'vowed', 'odrade', 'withdraw', 'aegisthus', 'clytemnestra', 'matres']
Epoch 1/2: 95%|█████████▌| 32699/34343 [5:37:27<28:55, 1.06s/it]
Epoch 1 Batch 32700 loss: 2.1485962867736816
Epoch 1/2: 95%|█████████▌| 32700/34343 [5:37:28<25:11, 1.09it/s]
Closest words to the center word isbn: ['isbn', 'gwh', 'kwh', 'icrm', 'pp', 'ibrd', 'hbk', 'pmid', 'twh', 'jul']
Epoch 1/2: 96%|█████████▌| 32799/34343 [5:38:36<07:21, 3.50it/s]
Epoch 1 Batch 32800 loss: 2.1603503227233887
Epoch 1/2: 96%|█████████▌| 32800/34343 [5:38:36<09:55, 2.59it/s]
Closest words to the center word cost: ['gwh', 'cost', 'expenditures', 'kwh', 'gdp', 'speeds', 'grt', 'bandwidth', 'tons', 'rate']
Epoch 1/2: 96%|█████████▌| 32899/34343 [5:39:45<05:07, 4.69it/s]
Epoch 1 Batch 32900 loss: 2.1025540828704834
Epoch 1/2: 96%|█████████▌| 32900/34343 [5:39:45<09:00, 2.67it/s]
Closest words to the center word john: ['john', 'earl', 'cricketer', 'leiserson', 'george', 'cormen', 'yoannis', 'wadsworth', 'francis', 'viscount']
Epoch 1/2: 96%|█████████▌| 32999/34343 [5:40:54<04:47, 4.68it/s]
Epoch 1 Batch 33000 loss: 2.1741445064544678
Epoch 1/2: 96%|█████████▌| 33000/34343 [5:41:10<1:55:06, 5.14s/it]
Closest words to the center word road: ['road', 'nfc', 'afc', 'commuter', 'oakland', 'piccadilly', 'ferry', 'playoffs', 'divisional', 'erie']
Epoch 1/2: 96%|█████████▋| 33099/34343 [5:42:18<16:19, 1.27it/s]
Epoch 1 Batch 33100 loss: 2.1251473426818848
Epoch 1/2: 96%|█████████▋| 33100/34343 [5:42:18<15:43, 1.32it/s]
Closest words to the center word that: ['that', 'falsifiable', 'priori', 'empirically', 'testable', 'countably', 'divinely', 'verifiable', 'conclusive', 'hadn']
Epoch 1/2: 97%|█████████▋| 33199/34343 [5:43:26<04:39, 4.09it/s]
Epoch 1 Batch 33200 loss: 2.127079486846924
Epoch 1/2: 97%|█████████▋| 33200/34343 [5:43:26<07:11, 2.65it/s]
Closest words to the center word lady: ['lady', 'boleyn', 'duchess', 'wife', 'granddaughter', 'niece', 'princess', 'daughter', 'heiress', 'aunt']
Epoch 1/2: 97%|█████████▋| 33299/34343 [5:44:35<03:44, 4.65it/s]
Epoch 1 Batch 33300 loss: 2.1511149406433105
Epoch 1/2: 97%|█████████▋| 33300/34343 [5:44:36<06:12, 2.80it/s]
Closest words to the center word connected: ['connected', 'isomorphic', 'homeomorphic', 'automorphism', 'perpendicular', 'homomorphism', 'connecting', 'bijective', 'bounded', 'normed']
Epoch 1/2: 97%|█████████▋| 33399/34343 [5:45:59<1:17:31, 4.93s/it]
Epoch 1 Batch 33400 loss: 2.126316547393799
Epoch 1/2: 97%|█████████▋| 33400/34343 [5:46:00<57:26, 3.66s/it]
Closest words to the center word spanish: ['spanish', 'portuguese', 'french', 'polynesia', 'blica', 'italian', 'argentine', 'austro', 'dutch', 'basque']
Epoch 1/2: 98%|█████████▊| 33499/34343 [5:47:07<06:49, 2.06it/s]
Epoch 1 Batch 33500 loss: 2.1518990993499756
Epoch 1/2: 98%|█████████▊| 33500/34343 [5:47:08<07:43, 1.82it/s]
Closest words to the center word split: ['split', 'divided', 'pluriform', 'inducted', 'factions', 'merged', 'subdivided', 'nfc', 'afc', 'coalitions']
Epoch 1/2: 98%|█████████▊| 33599/34343 [5:48:18<04:14, 2.93it/s]
Epoch 1 Batch 33600 loss: 2.1346943378448486
Epoch 1/2: 98%|█████████▊| 33600/34343 [5:48:19<05:38, 2.19it/s]
Closest words to the center word basal: ['phosphorylation', 'basal', 'citric', 'cvd', 'secreted', 'hormones', 'pyruvate', 'glycogen', 'anterior', 'clotting']
Epoch 1/2: 98%|█████████▊| 33699/34343 [5:49:28<02:18, 4.67it/s]
Epoch 1 Batch 33700 loss: 2.154817819595337
Epoch 1/2: 98%|█████████▊| 33700/34343 [5:49:29<04:06, 2.60it/s]
Closest words to the center word land: ['arable', 'land', 'irrigated', 'pastures', 'hydropower', 'km', 'sq', 'runways', 'crops', 'navigable']
Epoch 1/2: 98%|█████████▊| 33799/34343 [5:50:52<22:53, 2.52s/it]
Epoch 1 Batch 33800 loss: 2.142815589904785
Epoch 1/2: 98%|█████████▊| 33800/34343 [5:50:53<17:53, 1.98s/it]
Closest words to the center word african: ['african', 'saharan', 'chungcheong', 'asian', 'ifrcs', 'oau', 'wtoo', 'wto', 'oecs', 'afdb']
Epoch 1/2: 99%|█████████▊| 33899/34343 [5:52:00<02:33, 2.90it/s]
Epoch 1 Batch 33900 loss: 2.1455960273742676
Epoch 1/2: 99%|█████████▊| 33900/34343 [5:52:01<03:13, 2.28it/s]
Closest words to the center word chess: ['chess', 'championships', 'finalist', 'badminton', 'tennis', 'handball', 'championship', 'uefa', 'hockey', 'prix']
Epoch 1/2: 99%|█████████▉| 33999/34343 [5:53:08<01:13, 4.68it/s]
Epoch 1 Batch 34000 loss: 2.185729503631592
Epoch 1/2: 99%|█████████▉| 34000/34343 [5:53:08<02:02, 2.80it/s]
Closest words to the center word known: ['known', 'referred', 'regarded', 'agave', 'described', 'refered', 'classified', 'remembered', 'argumentum', 'understood']
Epoch 1/2: 99%|█████████▉| 34099/34343 [5:54:18<00:58, 4.19it/s]
Epoch 1 Batch 34100 loss: 2.1650309562683105
Epoch 1/2: 99%|█████████▉| 34100/34343 [5:54:18<01:28, 2.76it/s]
Closest words to the center word html: ['iom', 'ftp', 'pngimage', 'html', 'opcw', 'nonsignatory', 'http', 'webelements', 'icrm', 'www']
Epoch 1/2: 100%|█████████▉| 34199/34343 [5:55:40<03:06, 1.30s/it]
Epoch 1 Batch 34200 loss: 2.1328563690185547
Epoch 1/2: 100%|█████████▉| 34200/34343 [5:55:41<02:38, 1.11s/it]
Closest words to the center word thus: ['falsifiable', 'causal', 'thus', 'bijective', 'pluriform', 'priori', 'rationality', 'reactivity', 'integrable', 'axiom']
Epoch 1/2: 100%|█████████▉| 34299/34343 [5:56:48<00:10, 4.28it/s]
Epoch 1 Batch 34300 loss: 2.1766209602355957
Epoch 1/2: 100%|█████████▉| 34300/34343 [5:56:49<00:15, 2.73it/s]
Closest words to the center word animals: ['animals', 'organisms', 'multicellular', 'species', 'mammals', 'fungi', 'cassava', 'invertebrates', 'beets', 'shellfish']
Epoch 1/2: 100%|██████████| 34343/34343 [5:57:16<00:00, 1.60it/s]
Epoch 1 loss: 2.234515273133304
Epoch 2/2: 0%| | 99/34343 [01:23<9:13:17, 1.03it/s]
Epoch 2 Batch 100 loss: 2.1427221298217773
Epoch 2/2: 0%| | 100/34343 [01:24<8:27:31, 1.12it/s]
Closest words to the center word people: ['people', 'refugees', 'albanians', 'births', 'persons', 'americans', 'politicians', 'nationality', 'immigrants', 'lgbt']
Epoch 2/2: 1%| | 199/34343 [02:31<2:27:51, 3.85it/s]
Epoch 2 Batch 200 loss: 2.13472843170166
Epoch 2/2: 1%| | 200/34343 [02:32<3:40:42, 2.58it/s]
Closest words to the center word been: ['been', 'become', 'fallen', 'arisen', 'be', 'existed', 'harshly', 'recently', 'agave', 'householder']
Epoch 2/2: 1%| | 299/34343 [03:39<2:02:12, 4.64it/s]
Epoch 2 Batch 300 loss: 2.078275442123413
Epoch 2/2: 1%| | 300/34343 [03:40<3:24:26, 2.78it/s]
Closest words to the center word governor: ['governor', 'governors', 'minister', 'lieutenant', 'bailiff', 'secretary', 'deputy', 'appointed', 'premiers', 'earl']
Epoch 2/2: 1%| | 399/34343 [04:47<1:59:58, 4.72it/s]
Epoch 2 Batch 400 loss: 2.158493757247925
Epoch 2/2: 1%| | 400/34343 [05:04<48:47:35, 5.18s/it]
Closest words to the center word marry: ['marry', 'remarried', 'married', 'grandmother', 'clytemnestra', 'seduce', 'tenji', 'aegisthus', 'daughter', 'confess']
Epoch 2/2: 1%|▏ | 499/34343 [06:13<5:49:12, 1.62it/s]
Epoch 2 Batch 500 loss: 2.12949538230896
Epoch 2/2: 1%|▏ | 500/34343 [06:13<6:04:33, 1.55it/s]
Closest words to the center word with: ['with', 'ifrcs', 'between', 'close', 'ifad', 'insubstantial', 'tamarin', 'icrm', 'ifc', 'positively']
Epoch 2/2: 2%|▏ | 599/34343 [07:21<2:04:04, 4.53it/s]
Epoch 2 Batch 600 loss: 2.130528450012207
Epoch 2/2: 2%|▏ | 600/34343 [07:22<3:16:58, 2.85it/s]
Closest words to the center word bj: ['bj', 'finalist', 'wagoner', 'ulvaeus', 'discography', 'rgen', 'rk', 'composer', 'householder', 'elke']
Epoch 2/2: 2%|▏ | 699/34343 [08:29<1:58:28, 4.73it/s]
Epoch 2 Batch 700 loss: 2.119719982147217
Epoch 2/2: 2%|▏ | 700/34343 [08:30<3:14:13, 2.89it/s]
Closest words to the center word lowlands: ['lowlands', 'subtropical', 'humid', 'semiarid', 'mountainous', 'uplands', 'cordillera', 'hilly', 'arid', 'broadleaf']
Epoch 2/2: 2%|▏ | 799/34343 [09:58<33:12:40, 3.56s/it]
Epoch 2 Batch 800 loss: 2.059316396713257
Epoch 2/2: 2%|▏ | 800/34343 [09:58<25:10:51, 2.70s/it]
Closest words to the center word simple: ['mathfrak', 'deterministic', 'bilinear', 'countably', 'bijective', 'adjoint', 'boolean', 'functor', 'newnode', 'convolution']
Epoch 2/2: 3%|▎ | 899/34343 [11:07<2:34:24, 3.61it/s]
Epoch 2 Batch 900 loss: 2.1261239051818848
Epoch 2/2: 3%|▎ | 900/34343 [11:07<3:34:47, 2.60it/s]
Closest words to the center word robert: ['leiserson', 'rivest', 'cormen', 'elke', 'physiologist', 'laureate', 'robert', 'geneticist', 'wadsworth', 'archibald']
Epoch 2/2: 3%|▎ | 999/34343 [12:15<2:07:05, 4.37it/s]
Epoch 2 Batch 1000 loss: 2.14149808883667
Epoch 2/2: 3%|▎ | 1000/34343 [12:16<3:22:52, 2.74it/s]
Closest words to the center word ascribed: ['ascribed', 'attributed', 'epistle', 'ordained', 'referred', 'anh', 'gnostic', 'apocryphal', 'authorship', 'epistles']
Epoch 2/2: 3%|▎ | 1099/34343 [13:23<1:57:10, 4.73it/s]
Epoch 2 Batch 1100 loss: 2.1283271312713623
Epoch 2/2: 3%|▎ | 1100/34343 [13:24<3:13:19, 2.87it/s]
Closest words to the center word alabama: ['township', 'abet', 'devry', 'chungcheong', 'alabama', 'ssn', 'busan', 'bangor', 'missouri', 'county']
Epoch 2/2: 3%|▎ | 1199/34343 [14:49<7:18:34, 1.26it/s]
Epoch 2 Batch 1200 loss: 2.108813762664795
Epoch 2/2: 3%|▎ | 1200/34343 [14:50<6:59:21, 1.32it/s]
Closest words to the center word divers: ['divers', 'diving', 'competitions', 'curling', 'restaurants', 'grt', 'bowls', 'golf', 'handball', 'skiing']
Epoch 2/2: 4%|▍ | 1299/34343 [15:58<2:20:52, 3.91it/s]
Epoch 2 Batch 1300 loss: 2.11685848236084
Epoch 2/2: 4%|▍ | 1300/34343 [15:59<3:27:35, 2.65it/s]
Closest words to the center word denominational: ['denominational', 'denominations', 'fundamentalist', 'evangelicalism', 'haredi', 'churches', 'reconstructionist', 'masorti', 'hutterites', 'unido']
Epoch 2/2: 4%|▍ | 1399/34343 [17:07<1:58:24, 4.64it/s]
Epoch 2 Batch 1400 loss: 2.136810779571533
Epoch 2/2: 4%|▍ | 1400/34343 [17:08<4:46:10, 1.92it/s]
Closest words to the center word due: ['due', 'owing', 'reactivity', 'induce', 'desertification', 'inversely', 'cloudy', 'hyperinsulinism', 'mortality', 'contributes']
Epoch 2/2: 4%|▍ | 1499/34343 [18:31<46:13:55, 5.07s/it]
Epoch 2 Batch 1500 loss: 2.115029811859131
Epoch 2/2: 4%|▍ | 1500/34343 [18:32<34:14:56, 3.75s/it]
Closest words to the center word establish: ['unido', 'establish', 'wco', 'unctad', 'upu', 'ifrcs', 'wftu', 'enact', 'unmibh', 'wcl']
Epoch 2/2: 5%|▍ | 1599/34343 [19:39<5:19:40, 1.71it/s]
Epoch 2 Batch 1600 loss: 2.08738374710083
Epoch 2/2: 5%|▍ | 1600/34343 [19:40<5:37:05, 1.62it/s]
Closest words to the center word alliance: ['alliance', 'ifrcs', 'unido', 'unctad', 'wco', 'opcw', 'wftu', 'ifc', 'iom', 'frud']
Epoch 2/2: 5%|▍ | 1699/34343 [20:48<2:19:00, 3.91it/s]
Epoch 2 Batch 1700 loss: 2.10058856010437
Epoch 2/2: 5%|▍ | 1700/34343 [20:48<3:27:46, 2.62it/s]
Closest words to the center word second: ['second', 'third', 'fourth', 'fifth', 'sixth', 'seventh', 'ninth', 'rd', 'tenth', 'nd']
Epoch 2/2: 5%|▌ | 1799/34343 [21:59<1:54:44, 4.73it/s]
Epoch 2 Batch 1800 loss: 2.1364266872406006
Epoch 2/2: 5%|▌ | 1800/34343 [21:59<3:02:41, 2.97it/s]
Closest words to the center word science: ['science', 'fiction', 'cognitivism', 'sciences', 'informatics', 'psychology', 'cognitive', 'engineering', 'epistemology', 'sociology']
Epoch 2/2: 6%|▌ | 1899/34343 [23:23<29:52:31, 3.31s/it]
Epoch 2 Batch 1900 loss: 2.1308605670928955
Epoch 2/2: 6%|▌ | 1900/34343 [23:24<22:43:45, 2.52s/it]
Closest words to the center word pragmatic: ['pragmatic', 'normative', 'egoism', 'falsifiable', 'cognitivism', 'libertarianism', 'agnosticism', 'rationality', 'consequentialism', 'relativism']
Epoch 2/2: 6%|▌ | 1999/34343 [24:35<4:27:08, 2.02it/s]
Epoch 2 Batch 2000 loss: 2.123274564743042
Epoch 2/2: 6%|▌ | 2000/34343 [24:35<4:57:27, 1.81it/s]
Closest words to the center word also: ['also', 'wmo', 'disambiguation', 'wtoo', 'ifad', 'wftu', 'opcw', 'unido', 'ifrcs', 'wcl']
Epoch 2/2: 6%|▌ | 2099/34343 [25:43<2:01:03, 4.44it/s]
Epoch 2 Batch 2100 loss: 2.0830719470977783
Epoch 2/2: 6%|▌ | 2100/34343 [25:44<3:11:09, 2.81it/s]
Closest words to the center word ingredients: ['sorghum', 'ingredients', 'spices', 'cassava', 'solvents', 'soybeans', 'beets', 'soy', 'alkaloids', 'dishes']
Epoch 2/2: 6%|▋ | 2199/34343 [26:52<1:53:15, 4.73it/s]
Epoch 2 Batch 2200 loss: 2.109307289123535
Epoch 2/2: 6%|▋ | 2200/34343 [26:52<3:03:44, 2.92it/s]
Closest words to the center word york: ['york', 'giroux', 'schuster', 'knopf', 'ny', 'newark', 'scribner', 'berkley', 'schenectady', 'devry']
Epoch 2/2: 7%|▋ | 2299/34343 [28:16<22:40:05, 2.55s/it]
Epoch 2 Batch 2300 loss: 2.0878589153289795
Epoch 2/2: 7%|▋ | 2300/34343 [28:17<17:35:18, 1.98s/it]
Closest words to the center word france: ['france', 'belgium', 'portugal', 'spain', 'partement', 'luxembourg', 'netherlands', 'alsace', 'castile', 'nazaire']
Epoch 2/2: 7%|▋ | 2399/34343 [29:23<3:03:09, 2.91it/s]
Epoch 2 Batch 2400 loss: 2.139266014099121
Epoch 2/2: 7%|▋ | 2400/34343 [29:24<3:58:10, 2.24it/s]
Closest words to the center word fire: ['fire', 'tank', 'projectiles', 'ammunition', 'bolt', 'dwt', 'combustion', 'projectile', 'torpedo', 'propelled']
Epoch 2/2: 7%|▋ | 2499/34343 [30:33<1:56:40, 4.55it/s]
Epoch 2 Batch 2500 loss: 2.1110358238220215
Epoch 2/2: 7%|▋ | 2500/34343 [30:33<3:04:56, 2.87it/s]
Closest words to the center word a: ['a', 'pluriform', 'every', 'automorphism', 'any', 'another', 'monoid', 'agave', 'otimes', 'newnode']
Epoch 2/2: 8%|▊ | 2599/34343 [31:42<1:50:59, 4.77it/s]
Epoch 2 Batch 2600 loss: 2.0861809253692627
Epoch 2/2: 8%|▊ | 2600/34343 [31:43<3:06:06, 2.84it/s]
Closest words to the center word or: ['or', 'ifrcs', 'grt', 'newnode', 'rajonas', 'chordata', 'insubstantial', 'conjugated', 'prev', 'ifad']
Epoch 2/2: 8%|▊ | 2699/34343 [33:04<11:38:27, 1.32s/it]
Epoch 2 Batch 2700 loss: 2.1319422721862793
Epoch 2/2: 8%|▊ | 2700/34343 [33:05<9:59:22, 1.14s/it]
Closest words to the center word edited: ['edited', 'elke', 'hlich', 'rivest', 'leiserson', 'anh', 'routledge', 'pratchett', 'reprinted', 'cormen']
Epoch 2/2: 8%|▊ | 2799/34343 [34:12<2:25:22, 3.62it/s]
Epoch 2 Batch 2800 loss: 2.1186113357543945
Epoch 2/2: 8%|▊ | 2800/34343 [34:13<3:27:22, 2.54it/s]
Closest words to the center word wealth: ['wealth', 'earnings', 'gdp', 'prosperity', 'glasnost', 'overgrazing', 'vitality', 'subsistence', 'income', 'urbanization']
Epoch 2/2: 8%|▊ | 2899/34343 [35:20<1:50:49, 4.73it/s]
Epoch 2 Batch 2900 loss: 2.0913403034210205
Epoch 2/2: 8%|▊ | 2900/34343 [35:20<3:00:28, 2.90it/s]
Closest words to the center word has: ['has', 'had', 'have', 'ifrcs', 'hasn', 'pluriform', 'having', 'ifad', 'enjoys', 'possesses']
Epoch 2/2: 9%|▊ | 2999/34343 [36:29<1:49:42, 4.76it/s]
Epoch 2 Batch 3000 loss: 2.0676462650299072
Epoch 2/2: 9%|▊ | 3000/34343 [36:30<2:59:12, 2.91it/s]
Closest words to the center word verb: ['verb', 'infinitive', 'verbs', 'perfective', 'participle', 'approximant', 'consonant', 'fricative', 'nouns', 'nominative']
Epoch 2/2: 9%|▉ | 3099/34343 [37:55<6:49:00, 1.27it/s]
Epoch 2 Batch 3100 loss: 2.0898971557617188
Epoch 2/2: 9%|▉ | 3100/34343 [37:55<6:28:44, 1.34it/s]
Closest words to the center word into: ['into', 'agave', 'subdivided', 'onto', 'divided', 'diploid', 'across', 'northward', 'together', 'through']
Epoch 2/2: 9%|▉ | 3199/34343 [39:03<1:56:54, 4.44it/s]
Epoch 2 Batch 3200 loss: 2.125943899154663
Epoch 2/2: 9%|▉ | 3200/34343 [39:04<3:09:01, 2.75it/s]
Closest words to the center word french: ['french', 'ois', 'fran', 'dutch', 'spanish', 'auguste', 'comte', 'belgian', 'portuguese', 'outre']
Epoch 2/2: 10%|▉ | 3299/34343 [40:10<1:50:56, 4.66it/s]
Epoch 2 Batch 3300 loss: 2.0982842445373535
Epoch 2/2: 10%|▉ | 3300/34343 [40:11<3:12:07, 2.69it/s]
Closest words to the center word expected: ['expected', 'able', 'lifes', 'expectancy', 'estimated', 'grt', 'willing', 'calculate', 'homeomorphic', 'adjusted']
Epoch 2/2: 10%|▉ | 3399/34343 [41:36<44:11:25, 5.14s/it]
Epoch 2 Batch 3400 loss: 2.088789463043213
Epoch 2/2: 10%|▉ | 3400/34343 [41:36<32:38:19, 3.80s/it]
Closest words to the center word interventionist: ['interventionist', 'laissez', 'collectivism', 'pluriform', 'conservatism', 'totalitarian', 'faire', 'egoism', 'egalitarianism', 'authoritarianism']
Epoch 2/2: 10%|█ | 3499/34343 [42:44<2:39:00, 3.23it/s]
Epoch 2 Batch 3500 loss: 2.083583354949951
Epoch 2/2: 10%|█ | 3500/34343 [42:45<3:42:12, 2.31it/s]
Closest words to the center word of: ['of', 'ifrcs', 'ifad', 'rajonas', 'icrm', 'ifc', 'wtoo', 'akan', 'wtro', 'wmo']
Epoch 2/2: 10%|█ | 3599/34343 [43:53<1:52:29, 4.55it/s]
Epoch 2 Batch 3600 loss: 2.1149137020111084
Epoch 2/2: 10%|█ | 3600/34343 [43:54<3:05:02, 2.77it/s]
Closest words to the center word sugarcubes: ['allman', 'wagoner', 'sugarcubes', 'rockabilly', 'django', 'vocals', 'albums', 'beatles', 'singles', 'everly']
Epoch 2/2: 11%|█ | 3699/34343 [45:02<1:51:27, 4.58it/s]
Epoch 2 Batch 3700 loss: 2.111382007598877
Epoch 2/2: 11%|█ | 3700/34343 [45:03<3:07:22, 2.73it/s]
Closest words to the center word mg: ['gwh', 'grt', 'twh', 'mg', 'cooh', 'kwh', 'pmid', 'kcal', 'dwt', 'pngimage']
Epoch 2/2: 11%|█ | 3799/34343 [46:27<8:47:37, 1.04s/it]
Epoch 2 Batch 3800 loss: 2.096947431564331
Epoch 2/2: 11%|█ | 3800/34343 [46:27<7:52:46, 1.08it/s]
Closest words to the center word social: ['social', 'pluriform', 'socio', 'egalitarianism', 'marxian', 'conservatism', 'welfare', 'libertarian', 'libertarianism', 'collectivism']
Epoch 2/2: 11%|█▏ | 3899/34343 [47:35<2:21:06, 3.60it/s]
Epoch 2 Batch 3900 loss: 2.1126112937927246
Epoch 2/2: 11%|█▏ | 3900/34343 [47:36<3:24:41, 2.48it/s]
Closest words to the center word massive: ['massive', 'pluriform', 'rapid', 'overgrazing', 'huge', 'shortage', 'sudden', 'catastrophic', 'recession', 'drought']
Epoch 2/2: 12%|█▏ | 3999/34343 [48:43<1:48:51, 4.65it/s]
Epoch 2 Batch 4000 loss: 2.1012675762176514
Epoch 2/2: 12%|█▏ | 4000/34343 [48:44<3:03:07, 2.76it/s]
Closest words to the center word generally: ['generally', 'widely', 'commonly', 'universally', 'often', 'usually', 'hotly', 'broadly', 'inherently', 'humid']
Epoch 2/2: 12%|█▏ | 4099/34343 [49:53<1:45:54, 4.76it/s]
Epoch 2 Batch 4100 loss: 2.126585006713867
Epoch 2/2: 12%|█▏ | 4100/34343 [50:09<42:11:39, 5.02s/it]
Closest words to the center word signed: ['signed', 'ratified', 'treaty', 'wetlands', 'runways', 'ratification', 'agreement', 'agreements', 'signing', 'accords']
Epoch 2/2: 12%|█▏ | 4199/34343 [51:18<6:24:49, 1.31it/s]
Epoch 2 Batch 4200 loss: 2.1400294303894043
Epoch 2/2: 12%|█▏ | 4200/34343 [51:19<6:10:36, 1.36it/s]
Closest words to the center word by: ['by', 'ifrcs', 'icrm', 'ifc', 'agave', 'rajonas', 'unido', 'leiserson', 'ifad', 'iom']
Epoch 2/2: 13%|█▎ | 4299/34343 [52:27<2:07:40, 3.92it/s]
Epoch 2 Batch 4300 loss: 2.1312642097473145
Epoch 2/2: 13%|█▎ | 4300/34343 [52:28<3:12:47, 2.60it/s]
Closest words to the center word most: ['most', 'lifes', 'poorest', 'earliest', 'highly', 'extremely', 'more', 'largest', 'greatest', 'less']
Epoch 2/2: 13%|█▎ | 4399/34343 [53:37<1:47:25, 4.65it/s]
Epoch 2 Batch 4400 loss: 2.139698028564453
Epoch 2/2: 13%|█▎ | 4400/34343 [53:38<2:55:23, 2.85it/s]
Closest words to the center word is: ['is', 'satisfies', 'bijective', 'refers', 'consists', 'was', 'behaves', 'contains', 'corresponds', 'exists']
Epoch 2/2: 13%|█▎ | 4499/34343 [55:03<40:19:51, 4.87s/it]
Epoch 2 Batch 4500 loss: 2.091897964477539
Epoch 2/2: 13%|█▎ | 4500/34343 [55:03<29:56:05, 3.61s/it]
Closest words to the center word chosen: ['chosen', 'elected', 'appointed', 'ordained', 'vested', 'anointed', 'sworn', 'overridden', 'nominated', 'proportional']
Epoch 2/2: 13%|█▎ | 4599/34343 [56:12<5:04:27, 1.63it/s]
Epoch 2 Batch 4600 loss: 2.1326465606689453
Epoch 2/2: 13%|█▎ | 4600/34343 [56:12<5:06:40, 1.62it/s]
Closest words to the center word praise: ['praise', 'everlasting', 'preach', 'forgiveness', 'almighty', 'nomination', 'myself', 'thee', 'amnon', 'sins']
Epoch 2/2: 14%|█▎ | 4699/34343 [57:22<1:56:12, 4.25it/s]
Epoch 2 Batch 4700 loss: 2.07889461517334
Epoch 2/2: 14%|█▎ | 4700/34343 [57:23<2:54:00, 2.84it/s]
Closest words to the center word the: ['the', 'ifrcs', 'pluriform', 'icrm', 'nonsignatory', 'intelsat', 'nfc', 'ifc', 'ladoga', 'vernal']
Epoch 2/2: 14%|█▍ | 4799/34343 [58:31<1:44:50, 4.70it/s]
Epoch 2 Batch 4800 loss: 2.122645616531372
Epoch 2/2: 14%|█▍ | 4800/34343 [58:32<2:45:25, 2.98it/s]
Closest words to the center word earliest: ['earliest', 'oldest', 'masoretic', 'finest', 'cretaceous', 'cambrian', 'hellenistic', 'antiquity', 'prehistoric', 'carboniferous']
Epoch 2/2: 14%|█▍ | 4899/34343 [59:55<28:35:38, 3.50s/it]
Epoch 2 Batch 4900 loss: 2.0987653732299805
Epoch 2/2: 14%|█▍ | 4900/34343 [59:55<21:32:21, 2.63s/it]
Closest words to the center word after: ['after', 'before', 'lasted', 'afterwards', 'shortly', 'thereafter', 'months', 'during', 'weeks', 'afterward']
Epoch 2/2: 15%|█▍ | 4999/34343 [1:01:05<3:23:53, 2.40it/s]
Epoch 2 Batch 5000 loss: 2.0908498764038086
Epoch 2/2: 15%|█▍ | 5000/34343 [1:01:05<3:55:48, 2.07it/s]
Closest words to the center word australia: ['australia', 'tasmania', 'chungcheong', 'zealand', 'busan', 'canada', 'premiers', 'kitts', 'uruguay', 'queensland']
Epoch 2/2: 15%|█▍ | 5099/34343 [1:02:13<1:47:56, 4.52it/s]
Epoch 2 Batch 5100 loss: 2.123389720916748
Epoch 2/2: 15%|█▍ | 5100/34343 [1:02:14<2:49:46, 2.87it/s]
Closest words to the center word early: ['early', 'late', 'mid', 'kwh', 'twh', 'gwh', 'availabilitymales', 'cretaceous', 'nineteenth', 'eighteenth']
Epoch 2/2: 15%|█▌ | 5199/34343 [1:03:22<1:44:56, 4.63it/s]
Epoch 2 Batch 5200 loss: 2.087289333343506
Epoch 2/2: 15%|█▌ | 5200/34343 [1:03:23<2:47:42, 2.90it/s]
Closest words to the center word le: ['le', 'cegep', 'linguistique', 'estudios', 'serpento', 'quijote', 'dicis', 'histoire', 'esas', 'sur']
Epoch 2/2: 15%|█▌ | 5299/34343 [1:04:47<15:04:07, 1.87s/it]
Epoch 2 Batch 5300 loss: 2.09371018409729
Epoch 2/2: 15%|█▌ | 5300/34343 [1:04:48<12:06:57, 1.50s/it]
Closest words to the center word residing: ['residing', 'grt', 'ukrainians', 'populous', 'villages', 'wealthiest', 'sq', 'emigrated', 'bosniaks', 'poorest']
Epoch 2/2: 16%|█▌ | 5399/34343 [1:05:55<2:23:08, 3.37it/s]
Epoch 2 Batch 5400 loss: 2.153334856033325
Epoch 2/2: 16%|█▌ | 5400/34343 [1:05:55<3:10:54, 2.53it/s]
Closest words to the center word thus: ['falsifiable', 'thus', 'integrable', 'countably', 'bijective', 'infty', 'adjoint', 'enthalpy', 'causal', 'cardinality']
Epoch 2/2: 16%|█▌ | 5499/34343 [1:07:05<1:44:24, 4.60it/s]
Epoch 2 Batch 5500 loss: 2.08534574508667
Epoch 2/2: 16%|█▌ | 5500/34343 [1:07:06<2:40:43, 2.99it/s]
Closest words to the center word invention: ['invention', 'advent', 'inventor', 'microcomputer', 'ipf', 'synthesizers', 'combustion', 'luminiferous', 'synthesizer', 'introduction']
Epoch 2/2: 16%|█▋ | 5599/34343 [1:08:13<1:44:56, 4.57it/s]
Epoch 2 Batch 5600 loss: 2.1243724822998047
Epoch 2/2: 16%|█▋ | 5600/34343 [1:08:14<2:48:03, 2.85it/s]
Closest words to the center word charles: ['charles', 'leiserson', 'cormen', 'earl', 'duchess', 'louis', 'ois', 'emmanuel', 'valois', 'henry']
Epoch 2/2: 17%|█▋ | 5699/34343 [1:09:39<8:10:31, 1.03s/it]
Epoch 2 Batch 5700 loss: 2.0910654067993164
Epoch 2/2: 17%|█▋ | 5700/34343 [1:09:39<7:33:53, 1.05it/s]
Closest words to the center word terre: ['icrm', 'universidade', 'rajonas', 'ribeira', 'ouest', 'partement', 'noma', 'terre', 'classis', 'cegep']
Epoch 2/2: 17%|█▋ | 5799/34343 [1:10:48<1:48:30, 4.38it/s]
Epoch 2 Batch 5800 loss: 2.112058162689209
Epoch 2/2: 17%|█▋ | 5800/34343 [1:10:48<2:52:03, 2.76it/s]
Closest words to the center word church: ['church', 'episcopal', 'churches', 'orthodox', 'communion', 'catholic', 'methodist', 'lutheran', 'anglican', 'anglicanism']
Epoch 2/2: 17%|█▋ | 5899/34343 [1:11:57<1:40:13, 4.73it/s]
Epoch 2 Batch 5900 loss: 2.1148324012756348
Epoch 2/2: 17%|█▋ | 5900/34343 [1:11:58<2:45:46, 2.86it/s]
Closest words to the center word preferably: ['beets', 'cooked', 'stewed', 'waterborne', 'boiled', 'soy', 'grilled', 'dried', 'fried', 'cassava']
Epoch 2/2: 17%|█▋ | 5999/34343 [1:13:05<1:40:52, 4.68it/s]
Epoch 2 Batch 6000 loss: 2.1314735412597656
Epoch 2/2: 17%|█▋ | 6000/34343 [1:13:20<38:13:06, 4.85s/it]
Closest words to the center word led: ['led', 'unido', 'contributed', 'ifrcs', 'resulted', 'helped', 'caused', 'unctad', 'attempted', 'prompted']
Epoch 2/2: 18%|█▊ | 6099/34343 [1:14:28<2:40:24, 2.93it/s]
Epoch 2 Batch 6100 loss: 2.0925450325012207
Epoch 2/2: 18%|█▊ | 6100/34343 [1:14:29<3:28:39, 2.26it/s]
Closest words to the center word has: ['has', 'have', 'had', 'ifrcs', 'pluriform', 'hasn', 'having', 'hadn', 'enjoys', 'possesses']
Epoch 2/2: 18%|█▊ | 6199/34343 [1:15:39<1:44:02, 4.51it/s]
Epoch 2 Batch 6200 loss: 2.115598440170288
Epoch 2/2: 18%|█▊ | 6200/34343 [1:15:40<2:46:35, 2.82it/s]
Closest words to the center word gravitational: ['gravitational', 'dipole', 'electromagnetic', 'mathbf', 'acceleration', 'velocity', 'rotational', 'inertial', 'angular', 'spacetime']
Epoch 2/2: 18%|█▊ | 6299/34343 [1:16:48<1:39:59, 4.67it/s]
Epoch 2 Batch 6300 loss: 2.150808572769165
Epoch 2/2: 18%|█▊ | 6300/34343 [1:16:49<2:46:19, 2.81it/s]
Closest words to the center word rating: ['rating', 'gwh', 'grt', 'pluriform', 'kwh', 'twh', 'expenditures', 'mbit', 'dwt', 'mjs']
Epoch 2/2: 19%|█▊ | 6399/34343 [1:18:13<10:37:16, 1.37s/it]
Epoch 2 Batch 6400 loss: 2.1091442108154297
Epoch 2/2: 19%|█▊ | 6400/34343 [1:18:14<9:02:21, 1.16s/it]
Closest words to the center word broadcast: ['broadcast', 'intelsat', 'shortwave', 'isps', 'intersputnik', 'stations', 'inmarsat', 'radio', 'aired', 'eutelsat']
Epoch 2/2: 19%|█▉ | 6499/34343 [1:19:21<2:18:38, 3.35it/s]
Epoch 2 Batch 6500 loss: 2.0898923873901367
Epoch 2/2: 19%|█▉ | 6500/34343 [1:19:22<3:10:13, 2.44it/s]
Closest words to the center word forces: ['forces', 'troops', 'army', 'gendarmerie', 'marshal', 'armies', 'peacekeeping', 'armed', 'squadrons', 'force']
Epoch 2/2: 19%|█▉ | 6599/34343 [1:20:29<1:40:31, 4.60it/s]
Epoch 2 Batch 6600 loss: 2.1494300365448
Epoch 2/2: 19%|█▉ | 6600/34343 [1:20:29<2:41:06, 2.87it/s]
Closest words to the center word done: ['done', 'insubstantial', 'import', 'duplicate', 'irrelevent', 'subnet', 'nonsignatory', 'redirect', 'jargon', 'iom']
Epoch 2/2: 20%|█▉ | 6699/34343 [1:21:40<1:38:13, 4.69it/s]
Epoch 2 Batch 6700 loss: 2.068402051925659
Epoch 2/2: 20%|█▉ | 6700/34343 [1:21:40<2:43:11, 2.82it/s]
Closest words to the center word poverty: ['poverty', 'expectancy', 'est', 'income', 'unemployment', 'median', 'expenditures', 'mortality', 'population', 'wages']
Epoch 2/2: 20%|█▉ | 6799/34343 [1:23:04<7:46:08, 1.02s/it]
Epoch 2 Batch 6800 loss: 2.1448311805725098
Epoch 2/2: 20%|█▉ | 6800/34343 [1:23:05<6:59:13, 1.10it/s]
Closest words to the center word ahmet: ['ebne', 'footballer', 'grt', 'kwh', 'abol', 'gwh', 'rovere', 'maaouya', 'violinist', 'finalist']
Epoch 2/2: 20%|██ | 6899/34343 [1:24:15<2:09:37, 3.53it/s]
Epoch 2 Batch 6900 loss: 2.1025197505950928
Epoch 2/2: 20%|██ | 6900/34343 [1:24:15<2:58:44, 2.56it/s]
Closest words to the center word british: ['british', 'canadian', 'scottish', 'australian', 'american', 'naturalized', 'autodidacts', 'french', 'dutch', 'portuguese']
Epoch 2/2: 20%|██ | 6999/34343 [1:25:23<1:36:58, 4.70it/s]
Epoch 2 Batch 7000 loss: 2.095928430557251
Epoch 2/2: 20%|██ | 7000/34343 [1:25:23<2:33:05, 2.98it/s]
Closest words to the center word america: ['america', 'chungcheong', 'mycological', 'busan', 'gyeonggi', 'nfc', 'gyeongsang', 'africa', 'saharan', 'caribbean']
Epoch 2/2: 21%|██ | 7099/34343 [1:26:31<1:36:07, 4.72it/s]
Epoch 2 Batch 7100 loss: 2.082852602005005
Epoch 2/2: 21%|██ | 7100/34343 [1:26:47<36:38:03, 4.84s/it]
Closest words to the center word various: ['various', 'several', 'numerous', 'different', 'variety', 'differing', 'varying', 'multiple', 'many', 'ifad']
Epoch 2/2: 21%|██ | 7199/34343 [1:27:54<5:37:45, 1.34it/s]
Epoch 2 Batch 7200 loss: 2.112398862838745
Epoch 2/2: 21%|██ | 7200/34343 [1:27:55<5:23:27, 1.40it/s]
Closest words to the center word liu: ['unido', 'liu', 'unctad', 'wco', 'wftu', 'unmibh', 'opcw', 'ifrcs', 'kapoor', 'shek']
Epoch 2/2: 21%|██▏ | 7299/34343 [1:29:04<1:53:12, 3.98it/s]
Epoch 2 Batch 7300 loss: 2.092010021209717
Epoch 2/2: 21%|██▏ | 7300/34343 [1:29:04<2:51:32, 2.63it/s]
Closest words to the center word surgeon: ['surgeon', 'chemist', 'unido', 'physicist', 'philanthropist', 'physician', 'physiologist', 'zoologist', 'psychiatrist', 'mineralogist']
Epoch 2/2: 22%|██▏ | 7399/34343 [1:30:13<1:35:07, 4.72it/s]
Epoch 2 Batch 7400 loss: 2.088667392730713
Epoch 2/2: 22%|██▏ | 7400/34343 [1:30:14<2:41:24, 2.78it/s]
Closest words to the center word one: ['gwh', 'kwh', 'twh', 'grt', 'hbk', 'pngimage', 'sfg', 'cyg', 'pmid', 'jul']
Epoch 2/2: 22%|██▏ | 7499/34343 [1:31:38<36:02:00, 4.83s/it]
Epoch 2 Batch 7500 loss: 2.1404001712799072
Epoch 2/2: 22%|██▏ | 7500/34343 [1:31:39<26:51:55, 3.60s/it]
Closest words to the center word wonderful: ['wonderful', 'stevie', 'austen', 'frankenstein', 'poirot', 'swaim', 'sherlock', 'marple', 'diddley', 'loves']
Epoch 2/2: 22%|██▏ | 7599/34343 [1:32:46<3:28:59, 2.13it/s]
Epoch 2 Batch 7600 loss: 2.103727340698242
Epoch 2/2: 22%|██▏ | 7600/34343 [1:32:47<3:49:00, 1.95it/s]
Closest words to the center word them: ['them', 'findable', 'matres', 'him', 'prev', 'thy', 'confess', 'preach', 'oneself', 'baptize']
Epoch 2/2: 22%|██▏ | 7699/34343 [1:33:56<1:41:04, 4.39it/s]
Epoch 2 Batch 7700 loss: 2.111868381500244
Epoch 2/2: 22%|██▏ | 7700/34343 [1:33:57<2:44:57, 2.69it/s]
Closest words to the center word which: ['which', 'cytosol', 'countably', 'ifrcs', 'endothermic', 'insoluble', 'enthalpy', 'symplectic', 'circularly', 'gangetic']
Epoch 2/2: 23%|██▎ | 7799/34343 [1:35:05<1:35:31, 4.63it/s]
Epoch 2 Batch 7800 loss: 2.120771884918213
Epoch 2/2: 23%|██▎ | 7800/34343 [1:35:06<2:30:37, 2.94it/s]
Closest words to the center word latex: ['latex', 'findable', 'iom', 'cassava', 'soy', 'lossy', 'codecs', 'ifad', 'scsi', 'ipf']
Epoch 2/2: 23%|██▎ | 7899/34343 [1:36:31<19:07:55, 2.60s/it]
Epoch 2 Batch 7900 loss: 2.0719943046569824
Epoch 2/2: 23%|██▎ | 7900/34343 [1:36:31<15:06:32, 2.06s/it]
Closest words to the center word mongoloids: ['mongoloids', 'elevations', 'lifes', 'incomes', 'humid', 'reactivity', 'rainfall', 'humidity', 'differentiable', 'estimators']
Epoch 2/2: 23%|██▎ | 7999/34343 [1:37:39<2:32:21, 2.88it/s]
Epoch 2 Batch 8000 loss: 2.151247024536133
Epoch 2/2: 23%|██▎ | 8000/34343 [1:37:40<3:17:14, 2.23it/s]
Closest words to the center word even: ['even', 'lifes', 'aesthetically', 'cheaper', 'weren', 'quicker', 'forgiving', 'falsifiable', 'worse', 'computationally']
Epoch 2/2: 24%|██▎ | 8099/34343 [1:38:47<1:33:29, 4.68it/s]
Epoch 2 Batch 8100 loss: 2.1032638549804688
Epoch 2/2: 24%|██▎ | 8100/34343 [1:38:48<2:33:56, 2.84it/s]
Closest words to the center word standard: ['standard', 'iec', 'cccc', 'bbbb', 'ansi', 'tiberian', 'iso', 'utf', 'phonetic', 'standards']
Epoch 2/2: 24%|██▍ | 8199/34343 [1:39:56<1:31:29, 4.76it/s]
Epoch 2 Batch 8200 loss: 2.1376395225524902
Epoch 2/2: 24%|██▍ | 8200/34343 [1:39:57<2:33:47, 2.83it/s]
Closest words to the center word il: ['il', 'bwv', 'anh', 'ebne', 'linguistique', 'stosunku', 'cegep', 'landsmannschaft', 'leiserson', 'studi']
Epoch 2/2: 24%|██▍ | 8299/34343 [1:41:20<9:20:42, 1.29s/it]
Epoch 2 Batch 8300 loss: 2.1120400428771973
Epoch 2/2: 24%|██▍ | 8300/34343 [1:41:21<8:02:19, 1.11s/it]
Closest words to the center word headache: ['headache', 'nausea', 'dizziness', 'diarrhea', 'vectorborne', 'vomiting', 'congenital', 'inhibitors', 'symptoms', 'hypothyroidism']
Epoch 2/2: 24%|██▍ | 8399/34343 [1:42:42<3:56:36, 1.83it/s]
Epoch 2 Batch 8400 loss: 2.1168150901794434
Epoch 2/2: 24%|██▍ | 8400/34343 [1:42:42<4:34:22, 1.58it/s]
Closest words to the center word aforementioned: ['aforementioned', 'privy', 'ecumenical', 'mormon', 'epistle', 'immaculate', 'curia', 'nevi', 'cluetrain', 'justices']
Epoch 2/2: 25%|██▍ | 8499/34343 [1:44:04<1:45:12, 4.09it/s]
Epoch 2 Batch 8500 loss: 2.105393409729004
Epoch 2/2: 25%|██▍ | 8500/34343 [1:44:05<2:48:06, 2.56it/s]
Closest words to the center word coal: ['coal', 'bauxite', 'hydropower', 'potash', 'fuels', 'kwh', 'petroleum', 'zinc', 'beets', 'gwh']
Epoch 2/2: 25%|██▌ | 8599/34343 [1:45:23<1:33:03, 4.61it/s]
Epoch 2 Batch 8600 loss: 2.0791122913360596
Epoch 2/2: 25%|██▌ | 8600/34343 [1:45:24<2:43:14, 2.63it/s]
Closest words to the center word graphics: ['graphics', 'raster', 'ipf', 'opengl', 'lossy', 'bitmap', 'usb', 'lossless', 'codecs', 'programmable']
Epoch 2/2: 25%|██▌ | 8699/34343 [1:46:51<2:55:29, 2.44it/s]
Epoch 2 Batch 8700 loss: 2.095363140106201
Epoch 2/2: 25%|██▌ | 8700/34343 [1:46:51<3:23:12, 2.10it/s]
Closest words to the center word if: ['if', 'prev', 'bijective', 'newnode', 'forall', 'refutable', 'otimes', 'bijection', 'countably', 'ldots']
Epoch 2/2: 26%|██▌ | 8799/34343 [1:48:03<1:39:47, 4.27it/s]
Epoch 2 Batch 8800 loss: 2.0790231227874756
Epoch 2/2: 26%|██▌ | 8800/34343 [1:48:03<2:29:34, 2.85it/s]
Closest words to the center word j: ['leiserson', 'elke', 'rivest', 'polskiej', 'cormen', 'stosunku', 'otimes', 'leq', 'landsmannschaft', 'hlich']
Epoch 2/2: 26%|██▌ | 8899/34343 [1:49:12<1:29:55, 4.72it/s]
Epoch 2 Batch 8900 loss: 2.159534215927124
Epoch 2/2: 26%|██▌ | 8900/34343 [1:49:13<2:21:50, 2.99it/s]
Closest words to the center word it: ['it', 'findable', 'prev', 'bijective', 'testable', 'falsifiable', 'empirically', 'metrizable', 'refutable', 'unwise']
Epoch 2/2: 26%|██▌ | 8999/34343 [1:50:38<12:44:57, 1.81s/it]
Epoch 2 Batch 9000 loss: 2.1130452156066895
Epoch 2/2: 26%|██▌ | 9000/34343 [1:50:39<10:16:01, 1.46s/it]
Closest words to the center word see: ['see', 'disambiguation', 'yird', 'redirects', 'list', 'newnode', 'topics', 'terrier', 'wtoo', 'wtro']
Epoch 2/2: 26%|██▋ | 9099/34343 [1:51:48<2:24:48, 2.91it/s]
Epoch 2 Batch 9100 loss: 2.0795629024505615
Epoch 2/2: 26%|██▋ | 9100/34343 [1:51:49<3:02:15, 2.31it/s]
Closest words to the center word final: ['final', 'finals', 'nfc', 'playoff', 'championship', 'divisional', 'fantasy', 'afc', 'champions', 'redskins']
Epoch 2/2: 27%|██▋ | 9199/34343 [1:53:00<1:34:52, 4.42it/s]
Epoch 2 Batch 9200 loss: 2.129692554473877
Epoch 2/2: 27%|██▋ | 9200/34343 [1:53:00<2:23:57, 2.91it/s]
Closest words to the center word a: ['a', 'pluriform', 'groupoid', 'prev', 'automorphism', 'bijective', 'newnode', 'descriptor', 'agave', 'lastnode']
Epoch 2/2: 27%|██▋ | 9299/34343 [1:54:11<1:27:59, 4.74it/s]
Epoch 2 Batch 9300 loss: 2.0988025665283203
Epoch 2/2: 27%|██▋ | 9300/34343 [1:54:11<2:33:43, 2.72it/s]
Closest words to the center word late: ['late', 'mid', 'kwh', 'gwh', 'nfc', 'early', 'nineteenth', 'twh', 'seventeenth', 'afc']
Epoch 2/2: 27%|██▋ | 9399/34343 [1:55:35<8:56:45, 1.29s/it]
Epoch 2 Batch 9400 loss: 2.0639731884002686
Epoch 2/2: 27%|██▋ | 9400/34343 [1:55:36<7:35:19, 1.10s/it]
Closest words to the center word placed: ['placed', 'worn', 'interred', 'inscribed', 'buried', 'inserted', 'touches', 'mounted', 'located', 'stacked']
Epoch 2/2: 28%|██▊ | 9499/34343 [1:56:43<1:55:07, 3.60it/s]
Epoch 2 Batch 9500 loss: 2.1140642166137695
Epoch 2/2: 28%|██▊ | 9500/34343 [1:56:44<2:42:05, 2.55it/s]
Closest words to the center word success: ['success', 'acclaim', 'popularity', 'airplay', 'downturn', 'successes', 'garnered', 'notoriety', 'comeback', 'postseason']
Epoch 2/2: 28%|██▊ | 9599/34343 [1:57:53<1:28:22, 4.67it/s]
Epoch 2 Batch 9600 loss: 2.0933616161346436
Epoch 2/2: 28%|██▊ | 9600/34343 [1:57:54<2:18:16, 2.98it/s]
Closest words to the center word divorced: ['divorced', 'remarried', 'married', 'caesaris', 'wed', 'householder', 'fathered', 'raped', 'agrippina', 'antonia']
Epoch 2/2: 28%|██▊ | 9699/34343 [1:59:02<1:30:31, 4.54it/s]
Epoch 2 Batch 9700 loss: 2.0646674633026123
Epoch 2/2: 28%|██▊ | 9700/34343 [1:59:02<2:24:05, 2.85it/s]
Closest words to the center word opponents: ['opponents', 'masculists', 'ideologies', 'collectivism', 'oppose', 'capitalists', 'supporters', 'detractors', 'unwillingness', 'egalitarianism']
Epoch 2/2: 29%|██▊ | 9799/34343 [2:00:25<5:09:20, 1.32it/s]
Epoch 2 Batch 9800 loss: 2.098212242126465
Epoch 2/2: 29%|██▊ | 9800/34343 [2:00:26<4:54:13, 1.39it/s]
Closest words to the center word erasmus: ['yoannis', 'erasmus', 'stwertka', 'palaeologus', 'mamre', 'judaica', 'dramatists', 'nevi', 'duchess', 'friedrich']
Epoch 2/2: 29%|██▉ | 9899/34343 [2:01:36<1:40:16, 4.06it/s]
Epoch 2 Batch 9900 loss: 2.0927066802978516
Epoch 2/2: 29%|██▉ | 9900/34343 [2:01:36<2:26:44, 2.78it/s]
Closest words to the center word replicating: ['replicating', 'eukaryotic', 'oxidizing', 'polymers', 'adjoint', 'deterministic', 'probabilistic', 'glycogen', 'multicellular', 'positron']
Epoch 2/2: 29%|██▉ | 9999/34343 [2:02:45<1:26:33, 4.69it/s]
Epoch 2 Batch 10000 loss: 2.116197347640991
Epoch 2/2: 29%|██▉ | 10000/34343 [2:02:46<2:17:33, 2.95it/s]
Closest words to the center word they: ['they', 'we', 'you', 'matres', 'gesserit', 'liars', 'lifes', 'microtubules', 'themselves', 'findable']
Epoch 2/2: 29%|██▉ | 10099/34343 [2:04:10<32:24:59, 4.81s/it]
Epoch 2 Batch 10100 loss: 2.0954537391662598
Epoch 2/2: 29%|██▉ | 10100/34343 [2:04:11<23:56:45, 3.56s/it]
Closest words to the center word international: ['ifrcs', 'ifc', 'iom', 'icrm', 'ifad', 'international', 'opcw', 'icftu', 'acct', 'ibrd']
Epoch 2/2: 30%|██▉ | 10199/34343 [2:05:18<3:08:10, 2.14it/s]
Epoch 2 Batch 10200 loss: 2.101100206375122
Epoch 2/2: 30%|██▉ | 10200/34343 [2:05:19<3:37:36, 1.85it/s]
Closest words to the center word led: ['led', 'unido', 'contributed', 'helped', 'ifrcs', 'caused', 'unctad', 'resulted', 'icrm', 'maaouya']
Epoch 2/2: 30%|██▉ | 10299/34343 [2:06:28<1:27:50, 4.56it/s]
Epoch 2 Batch 10300 loss: 2.0999958515167236
Epoch 2/2: 30%|██▉ | 10300/34343 [2:06:28<2:17:49, 2.91it/s]
Closest words to the center word parker: ['parker', 'clooney', 'bandleader', 'giroux', 'stevie', 'holliday', 'astaire', 'saxophonist', 'gillespie', 'zant']
Epoch 2/2: 30%|███ | 10399/34343 [2:07:39<1:27:27, 4.56it/s]
Epoch 2 Batch 10400 loss: 2.1005687713623047
Epoch 2/2: 30%|███ | 10400/34343 [2:07:40<2:29:13, 2.67it/s]
Closest words to the center word addresses: ['findable', 'addresses', 'rfc', 'dhcp', 'ipv', 'dns', 'address', 'servers', 'ip', 'iec']
Epoch 2/2: 31%|███ | 10499/34343 [2:09:04<16:37:46, 2.51s/it]
Epoch 2 Batch 10500 loss: 2.1011013984680176
Epoch 2/2: 31%|███ | 10500/34343 [2:09:05<13:04:12, 1.97s/it]
Closest words to the center word thought: ['thought', 'monistic', 'falsifiable', 'rationalism', 'materialism', 'panentheism', 'pantheism', 'leninism', 'empirically', 'testable']
Epoch 2/2: 31%|███ | 10599/34343 [2:10:14<1:58:40, 3.33it/s]
Epoch 2 Batch 10600 loss: 2.0845556259155273
Epoch 2/2: 31%|███ | 10600/34343 [2:10:15<2:47:37, 2.36it/s]
Closest words to the center word while: ['while', 'gangetic', 'although', 'inflicted', 'haliotis', 'though', 'hand', 'whilst', 'tropics', 'callithrix']
Epoch 2/2: 31%|███ | 10699/34343 [2:11:21<1:24:27, 4.67it/s]
Epoch 2 Batch 10700 loss: 2.097136974334717
Epoch 2/2: 31%|███ | 10700/34343 [2:11:22<2:16:52, 2.88it/s]
Closest words to the center word one: ['gwh', 'hbk', 'pngimage', 'kwh', 'grt', 'twh', 'cyg', 'sfg', 'jul', 'mjs']
Epoch 2/2: 31%|███▏ | 10799/34343 [2:12:30<1:22:57, 4.73it/s]
Epoch 2 Batch 10800 loss: 2.103605270385742
Epoch 2/2: 31%|███▏ | 10800/34343 [2:12:31<2:19:16, 2.82it/s]
Closest words to the center word security: ['opcw', 'unido', 'unctad', 'security', 'iom', 'ifad', 'icrm', 'ifrcs', 'ifc', 'pluriform']
Epoch 2/2: 32%|███▏ | 10899/34343 [2:13:57<4:02:28, 1.61it/s]
Epoch 2 Batch 10900 loss: 2.095186710357666
Epoch 2/2: 32%|███▏ | 10900/34343 [2:13:57<4:09:25, 1.57it/s]
Closest words to the center word character: ['character', 'villain', 'characters', 'protagonist', 'scrooge', 'superhero', 'animated', 'toriyama', 'elric', 'hitchhiker']
Epoch 2/2: 32%|███▏ | 10999/34343 [2:15:06<1:36:48, 4.02it/s]
Epoch 2 Batch 11000 loss: 2.1248416900634766
Epoch 2/2: 32%|███▏ | 11000/34343 [2:15:07<2:32:50, 2.55it/s]
Closest words to the center word mobil: ['kwh', 'mobil', 'gwh', 'twh', 'dwt', 'pluriform', 'intelsat', 'exxon', 'nasdaq', 'motors']
Epoch 2/2: 32%|███▏ | 11099/34343 [2:16:47<2:00:34, 3.21it/s]
Epoch 2 Batch 11100 loss: 2.1157004833221436
Epoch 2/2: 32%|███▏ | 11100/34343 [2:16:48<2:50:25, 2.27it/s]
Closest words to the center word logical: ['logical', 'adjoint', 'axiom', 'propositional', 'mathfrak', 'ponens', 'axiomatic', 'cognitivism', 'deterministic', 'countable']
Epoch 2/2: 33%|███▎ | 11199/34343 [2:18:38<29:11:27, 4.54s/it]
Epoch 2 Batch 11200 loss: 2.076874256134033
Epoch 2/2: 33%|███▎ | 11200/34343 [2:18:40<22:29:43, 3.50s/it]
Closest words to the center word players: ['players', 'playoffs', 'linemen', 'orioles', 'browns', 'astros', 'nhl', 'bengals', 'broncos', 'teams']
Epoch 2/2: 33%|███▎ | 11299/34343 [2:20:07<4:00:56, 1.59it/s]
Epoch 2 Batch 11300 loss: 2.1086976528167725
Epoch 2/2: 33%|███▎ | 11300/34343 [2:20:08<4:26:09, 1.44it/s]
Closest words to the center word facilitate: ['facilitate', 'nonsignatory', 'ifrcs', 'iom', 'ifad', 'opcw', 'stimulate', 'motivate', 'induce', 'ifc']
Epoch 2/2: 33%|███▎ | 11399/34343 [2:21:36<1:44:33, 3.66it/s]
Epoch 2 Batch 11400 loss: 2.0916242599487305
Epoch 2/2: 33%|███▎ | 11400/34343 [2:21:37<2:46:34, 2.30it/s]
Closest words to the center word minister: ['minister', 'prime', 'csu', 'ministers', 'cdu', 'succeeds', 'fdp', 'boutros', 'chancellor', 'strau']
Epoch 2/2: 33%|███▎ | 11499/34343 [2:23:01<1:36:37, 3.94it/s]
Epoch 2 Batch 11500 loss: 2.126551866531372
Epoch 2/2: 33%|███▎ | 11500/34343 [2:23:02<2:31:42, 2.51it/s]
Closest words to the center word mind: ['mind', 'phenomenology', 'cognition', 'egoism', 'cognitivism', 'objectivism', 'consciousness', 'metaphysics', 'intellect', 'brahman']
Epoch 2/2: 34%|███▍ | 11599/34343 [2:24:55<22:51:01, 3.62s/it]
Epoch 2 Batch 11600 loss: 2.094184637069702
Epoch 2/2: 34%|███▍ | 11600/34343 [2:24:56<17:26:12, 2.76s/it]
Closest words to the center word performance: ['performance', 'throughput', 'lossy', 'compression', 'efficiency', 'macroeconomic', 'paced', 'superscalar', 'airplay', 'lossless']
Epoch 2/2: 34%|███▍ | 11699/34343 [2:26:50<5:50:58, 1.08it/s]
Epoch 2 Batch 11700 loss: 2.1219887733459473
Epoch 2/2: 34%|███▍ | 11700/34343 [2:26:52<7:47:46, 1.24s/it]
Closest words to the center word has: ['has', 'hasn', 'had', 'have', 'ifrcs', 'pluriform', 'having', 'possesses', 'hadn', 'ifad']
Epoch 2/2: 34%|███▍ | 11799/34343 [2:28:21<1:34:59, 3.96it/s]
Epoch 2 Batch 11800 loss: 2.106555938720703
Epoch 2/2: 34%|███▍ | 11800/34343 [2:28:22<2:15:25, 2.77it/s]
Closest words to the center word which: ['which', 'enthalpy', 'cytosol', 'insoluble', 'countably', 'piezoelectric', 'centripetal', 'halide', 'symplectic', 'endothermic']
Epoch 2/2: 35%|███▍ | 11899/34343 [2:30:03<1:39:25, 3.76it/s]
Epoch 2 Batch 11900 loss: 2.116100549697876
Epoch 2/2: 35%|███▍ | 11900/34343 [2:30:03<2:22:48, 2.62it/s]
Closest words to the center word south: ['south', 'chungcheong', 'busan', 'irian', 'gyeonggi', 'sulawesi', 'north', 'tenggara', 'savannas', 'southwest']
Epoch 2/2: 35%|███▍ | 11999/34343 [2:31:54<13:58:33, 2.25s/it]
Epoch 2 Batch 12000 loss: 2.086256504058838
Epoch 2/2: 35%|███▍ | 12000/34343 [2:31:54<10:59:20, 1.77s/it]
Closest words to the center word possessed: ['possessed', 'transcendent', 'misled', 'lifes', 'immanent', 'harkonnen', 'peleus', 'knew', 'exercised', 'deified']
Epoch 2/2: 35%|███▌ | 12099/34343 [2:33:26<2:26:01, 2.54it/s]
Epoch 2 Batch 12100 loss: 2.1063146591186523
Epoch 2/2: 35%|███▌ | 12100/34343 [2:33:27<2:58:50, 2.07it/s]
Closest words to the center word collaboration: ['collaboration', 'wagoner', 'collaborated', 'interviews', 'friendship', 'collaborator', 'finalist', 'diffie', 'interview', 'emmylou']
Epoch 2/2: 36%|███▌ | 12199/34343 [2:35:50<2:06:20, 2.92it/s]
Epoch 2 Batch 12200 loss: 2.123460531234741
Epoch 2/2: 36%|███▌ | 12200/34343 [2:35:51<3:11:04, 1.93it/s]
Closest words to the center word any: ['any', 'anything', 'newnode', 'lastnode', 'prev', 'every', 'baryonic', 'whatsoever', 'differentiable', 'antiderivatives']
Epoch 2/2: 36%|███▌ | 12299/34343 [2:38:04<1:54:01, 3.22it/s]
Epoch 2 Batch 12300 loss: 2.0970840454101562
Epoch 2/2: 36%|███▌ | 12300/34343 [2:38:05<3:06:39, 1.97it/s]
Closest words to the center word ad: ['ad', 'argumentum', 'hominem', 'bc', 'bce', 'reductio', 'ce', 'hoc', 'yoannis', 'propter']
Epoch 2/2: 36%|███▌ | 12399/34343 [2:40:50<9:16:06, 1.52s/it]
Epoch 2 Batch 12400 loss: 2.1157491207122803
Epoch 2/2: 36%|███▌ | 12400/34343 [2:40:51<7:46:29, 1.28s/it]
Closest words to the center word twice: ['twice', 'innings', 'lifes', 'playoffs', 'strikeouts', 'batted', 'grt', 'intercalary', 'inning', 'centimeters']
Epoch 2/2: 36%|███▋ | 12499/34343 [2:42:33<2:11:32, 2.77it/s]
Epoch 2 Batch 12500 loss: 2.1198954582214355
Epoch 2/2: 36%|███▋ | 12500/34343 [2:42:34<2:57:29, 2.05it/s]
Closest words to the center word five: ['gwh', 'grt', 'kwh', 'hbk', 'twh', 'cyg', 'sfg', 'pngimage', 'mjs', 'jul']
Epoch 2/2: 37%|███▋ | 12599/34343 [2:45:08<1:47:23, 3.37it/s]
Epoch 2 Batch 12600 loss: 2.142111301422119
Epoch 2/2: 37%|███▋ | 12600/34343 [2:45:09<2:43:01, 2.22it/s]
Closest words to the center word compilers: ['compilers', 'lisp', 'macros', 'opengl', 'bytecode', 'applets', 'implementations', 'brainfuck', 'debugger', 'compiler']
Epoch 2/2: 37%|███▋ | 12699/34343 [2:47:06<1:36:24, 3.74it/s]
Epoch 2 Batch 12700 loss: 2.0801544189453125
Epoch 2/2: 37%|███▋ | 12700/34343 [2:47:33<48:57:58, 8.14s/it]
Closest words to the center word approved: ['approved', 'ratified', 'iom', 'amended', 'fda', 'unicameral', 'kwh', 'impeached', 'ifad', 'ratification']
Epoch 2/2: 37%|███▋ | 12799/34343 [2:49:07<4:52:12, 1.23it/s]
Epoch 2 Batch 12800 loss: 2.1307029724121094
Epoch 2/2: 37%|███▋ | 12800/34343 [2:49:07<4:51:26, 1.23it/s]
Closest words to the center word auger: ['auger', 'icrm', 'lorentz', 'physicist', 'coulomb', 'ibrd', 'leiserson', 'krebs', 'nsted', 'ment']
Epoch 2/2: 38%|███▊ | 12899/34343 [2:50:40<1:33:24, 3.83it/s]
Epoch 2 Batch 12900 loss: 2.14245343208313
Epoch 2/2: 38%|███▊ | 12900/34343 [2:50:41<2:32:01, 2.35it/s]
Closest words to the center word stadium: ['stadium', 'chargers', 'playoffs', 'texans', 'afc', 'nfc', 'oakland', 'playoff', 'broncos', 'steelers']
Epoch 2/2: 38%|███▊ | 12999/34343 [2:52:15<1:43:25, 3.44it/s]
Epoch 2 Batch 13000 loss: 2.105532646179199
Epoch 2/2: 38%|███▊ | 13000/34343 [2:52:16<3:24:16, 1.74it/s]
Closest words to the center word protected: ['protected', 'regulated', 'unido', 'wastes', 'dwt', 'administered', 'vesicles', 'ifrcs', 'dumping', 'pluriform']
Epoch 2/2: 38%|███▊ | 13099/34343 [2:54:17<34:21:46, 5.82s/it]
Epoch 2 Batch 13100 loss: 2.138997793197632
Epoch 2/2: 38%|███▊ | 13100/34343 [2:54:18<25:29:28, 4.32s/it]
Closest words to the center word subsequent: ['subsequent', 'culminated', 'perestroika', 'amanullah', 'abbasid', 'glasnost', 'ensuing', 'hastened', 'mauryan', 'resulted']
Epoch 2/2: 38%|███▊ | 13199/34343 [2:55:59<2:08:13, 2.75it/s]
Epoch 2 Batch 13200 loss: 2.1364693641662598
Epoch 2/2: 38%|███▊ | 13200/34343 [2:56:00<2:47:41, 2.10it/s]
Closest words to the center word competitively: ['competitively', 'kart', 'soybeans', 'aroma', 'firmware', 'skiing', 'bikes', 'gba', 'ductile', 'harmonicas']
Epoch 2/2: 39%|███▊ | 13299/34343 [2:57:41<1:52:28, 3.12it/s]
Epoch 2 Batch 13300 loss: 2.0943915843963623
Epoch 2/2: 39%|███▊ | 13300/34343 [2:57:42<3:12:14, 1.82it/s]
Closest words to the center word clairvoyance: ['clairvoyance', 'cognitivism', 'testable', 'falsifiable', 'therapies', 'memetics', 'deconstructive', 'paranormal', 'anecdotal', 'anthropic']
Epoch 2/2: 39%|███▉ | 13399/34343 [2:59:12<1:37:28, 3.58it/s]
Epoch 2 Batch 13400 loss: 2.108501434326172
Epoch 2/2: 39%|███▉ | 13400/34343 [2:59:13<2:34:05, 2.27it/s]
Closest words to the center word and: ['ifrcs', 'ifad', 'ifc', 'icrm', 'unmibh', 'opcw', 'unctad', 'rajonas', 'classis', 'icftu']
Epoch 2/2: 39%|███▉ | 13499/34343 [3:01:10<5:41:02, 1.02it/s]
Epoch 2 Batch 13500 loss: 2.14046573638916
Epoch 2/2: 39%|███▉ | 13500/34343 [3:01:11<5:51:50, 1.01s/it]
Closest words to the center word premier: ['premier', 'premiers', 'finalist', 'famers', 'chungcheong', 'coach', 'diamondbacks', 'nfc', 'football', 'footballers']
Epoch 2/2: 40%|███▉ | 13599/34343 [3:02:46<1:55:13, 3.00it/s]
Epoch 2 Batch 13600 loss: 2.1126320362091064
Epoch 2/2: 40%|███▉ | 13600/34343 [3:02:47<2:40:46, 2.15it/s]
Closest words to the center word sperm: ['sperm', 'diploid', 'eukaryotic', 'haploid', 'secrete', 'homologous', 'hormones', 'gamete', 'chromosomes', 'mitochondria']
Epoch 2/2: 40%|███▉ | 13699/34343 [3:04:21<1:34:50, 3.63it/s]
Epoch 2 Batch 13700 loss: 2.0808300971984863
Epoch 2/2: 40%|███▉ | 13700/34343 [3:04:22<2:29:12, 2.31it/s]
Closest words to the center word narrow: ['narrow', 'steep', 'sloping', 'humid', 'mountainous', 'gauge', 'kilometer', 'km', 'elevations', 'westerly']
Epoch 2/2: 40%|████ | 13799/34343 [3:06:09<33:13:50, 5.82s/it]
Epoch 2 Batch 13800 loss: 2.062546730041504
Epoch 2/2: 40%|████ | 13800/34343 [3:06:10<24:34:07, 4.31s/it]
Closest words to the center word were: ['were', 'are', 'persecuted', 'massacred', 'outnumbered', 'raids', 'aediles', 'serbs', 'ukrainians', 'byzantines']
Epoch 2/2: 40%|████ | 13899/34343 [3:07:41<4:24:37, 1.29it/s]
Epoch 2 Batch 13900 loss: 2.090404987335205
Epoch 2/2: 40%|████ | 13900/34343 [3:07:42<4:24:32, 1.29it/s]
Closest words to the center word chicago: ['chicago', 'devry', 'abet', 'culver', 'kansas', 'illinois', 'urbana', 'detroit', 'moines', 'tacoma']
Epoch 2/2: 41%|████ | 13999/34343 [3:09:10<1:45:37, 3.21it/s]
Epoch 2 Batch 14000 loss: 2.1093571186065674
Epoch 2/2: 41%|████ | 14000/34343 [3:09:11<2:32:37, 2.22it/s]
Closest words to the center word breeding: ['breeding', 'ferus', 'shrubs', 'crocodiles', 'habitat', 'cassava', 'prey', 'tusks', 'larvae', 'vectorborne']
Epoch 2/2: 41%|████ | 14099/34343 [3:10:53<1:39:30, 3.39it/s]
Epoch 2 Batch 14100 loss: 2.117936134338379
Epoch 2/2: 41%|████ | 14100/34343 [3:10:54<2:35:55, 2.16it/s]
Closest words to the center word revolution: ['revolution', 'bolsheviks', 'revolutionary', 'uprising', 'socialist', 'rsdlp', 'kuomintang', 'anarchism', 'sino', 'maoist']
Epoch 2/2: 41%|████▏ | 14199/34343 [3:12:49<26:48:52, 4.79s/it]
Epoch 2 Batch 14200 loss: 2.1263201236724854
Epoch 2/2: 41%|████▏ | 14200/34343 [3:12:50<19:57:05, 3.57s/it]
Closest words to the center word jeong: ['jeong', 'tiberian', 'hunmin', 'polskiej', 'cccc', 'cooh', 'eum', 'stosunku', 'rzeczypospolitej', 'ttt']
Epoch 2/2: 42%|████▏ | 14299/34343 [3:14:17<3:23:05, 1.64it/s]
Epoch 2 Batch 14300 loss: 2.089411497116089
Epoch 2/2: 42%|████▏ | 14300/34343 [3:14:18<4:14:42, 1.31it/s]
Closest words to the center word morning: ['morning', 'evening', 'friday', 'saturday', 'afternoon', 'selamat', 'night', 'tonight', 'thursday', 'solstice']
Epoch 2/2: 42%|████▏ | 14399/34343 [3:15:56<1:38:47, 3.36it/s]
Epoch 2 Batch 14400 loss: 2.0882961750030518
Epoch 2/2: 42%|████▏ | 14400/34343 [3:15:57<2:24:45, 2.30it/s]
Closest words to the center word does: ['does', 'findable', 'did', 'doesn', 'didn', 'factum', 'wouldn', 'opcw', 'do', 'iom']
Epoch 2/2: 42%|████▏ | 14499/34343 [3:17:39<1:27:26, 3.78it/s]
Epoch 2 Batch 14500 loss: 2.1101858615875244
Epoch 2/2: 42%|████▏ | 14500/34343 [3:17:39<2:32:22, 2.17it/s]
Closest words to the center word m: ['elke', 'm', 'cdots', 'ldots', 'stosunku', 'otimes', 'cdot', 'nchen', 'ttt', 'leq']
Epoch 2/2: 43%|████▎ | 14599/34343 [3:19:45<25:34:12, 4.66s/it]
Epoch 2 Batch 14600 loss: 2.106454849243164
Epoch 2/2: 43%|████▎ | 14600/34343 [3:19:45<19:05:12, 3.48s/it]
Closest words to the center word ouen: ['yoannis', 'basilica', 'churchyard', 'methodius', 'grenadines', 'sistine', 'kitts', 'chapel', 'hagia', 'benedictine']
Epoch 2/2: 43%|████▎ | 14699/34343 [3:21:29<2:48:26, 1.94it/s]
Epoch 2 Batch 14700 loss: 2.0788698196411133
Epoch 2/2: 43%|████▎ | 14700/34343 [3:21:30<3:19:19, 1.64it/s]
Closest words to the center word terrorist: ['terrorist', 'qaeda', 'opcw', 'ifrcs', 'hezbollah', 'unido', 'terrorism', 'paramilitary', 'islamist', 'peacekeeping']
Epoch 2/2: 43%|████▎ | 14799/34343 [3:23:04<1:33:37, 3.48it/s]
Epoch 2 Batch 14800 loss: 2.0820975303649902
Epoch 2/2: 43%|████▎ | 14800/34343 [3:23:05<2:20:17, 2.32it/s]
Closest words to the center word republicans: ['republicans', 'bolsheviks', 'conservatives', 'wingers', 'democrats', 'voters', 'whigs', 'liberals', 'militias', 'communists']
Epoch 2/2: 43%|████▎ | 14899/34343 [3:24:44<1:40:07, 3.24it/s]
Epoch 2 Batch 14900 loss: 2.08479642868042
Epoch 2/2: 43%|████▎ | 14900/34343 [3:24:44<2:29:13, 2.17it/s]
Closest words to the center word replacing: ['pluriform', 'replacing', 'imac', 'dwt', 'replaced', 'ipf', 'powerbook', 'otimes', 'cccc', 'bbbb']
Epoch 2/2: 44%|████▎ | 14999/34343 [3:26:59<11:40:42, 2.17s/it]
Epoch 2 Batch 15000 loss: 2.081838607788086
Epoch 2/2: 44%|████▎ | 15000/34343 [3:26:59<9:28:21, 1.76s/it]
Closest words to the center word this: ['this', 'enthalpy', 'epimenides', 'empirically', 'findable', 'falsifiability', 'minimax', 'strictest', 'casuistry', 'irreducibly']
Epoch 2/2: 44%|████▍ | 15099/34343 [3:28:29<1:48:28, 2.96it/s]
Epoch 2 Batch 15100 loss: 2.1021761894226074
Epoch 2/2: 44%|████▍ | 15100/34343 [3:28:30<2:20:39, 2.28it/s]
Closest words to the center word but: ['but', 'though', 'unless', 'liars', 'countably', 'lifes', 'nor', 'preregular', 'because', 'consummated']
Epoch 2/2: 44%|████▍ | 15199/34343 [3:30:04<1:24:06, 3.79it/s]
Epoch 2 Batch 15200 loss: 2.1122500896453857
Epoch 2/2: 44%|████▍ | 15200/34343 [3:30:04<2:07:30, 2.50it/s]
Closest words to the center word called: ['called', 'agave', 'termed', 'referred', 'labiodental', 'leontopithecus', 'endomorphism', 'denoted', 'disambiguation', 'paracompact']
Epoch 2/2: 45%|████▍ | 15299/34343 [3:31:48<1:58:21, 2.68it/s]
Epoch 2 Batch 15300 loss: 2.0835440158843994
Epoch 2/2: 45%|████▍ | 15300/34343 [3:31:49<2:46:14, 1.91it/s]
Closest words to the center word or: ['or', 'alkoxide', 'clonic', 'ifrcs', 'waterborne', 'ketone', 'tachycardia', 'unsaturated', 'newnode', 'sibilant']
Epoch 2/2: 45%|████▍ | 15399/34343 [3:34:04<5:51:17, 1.11s/it]
Epoch 2 Batch 15400 loss: 2.1030282974243164
Epoch 2/2: 45%|████▍ | 15400/34343 [3:34:05<5:24:45, 1.03s/it]
Closest words to the center word refer: ['refer', 'describe', 'refers', 'referred', 'relate', 'adhere', 'refered', 'belong', 'referring', 'classify']
Epoch 2/2: 45%|████▌ | 15499/34343 [3:35:51<1:42:49, 3.05it/s]
Epoch 2 Batch 15500 loss: 2.0975685119628906
Epoch 2/2: 45%|████▌ | 15500/34343 [3:35:52<2:29:14, 2.10it/s]
Closest words to the center word civil: ['civil', 'liberties', 'pluriform', 'criminal', 'secedes', 'judicial', 'suffrage', 'icao', 'williamite', 'confederate']
Epoch 2/2: 45%|████▌ | 15599/34343 [3:37:24<1:17:05, 4.05it/s]
Epoch 2 Batch 15600 loss: 2.0705533027648926
Epoch 2/2: 45%|████▌ | 15600/34343 [3:37:24<1:57:43, 2.65it/s]
Closest words to the center word not: ['not', 'liars', 'unable', 'refutable', 'repent', 'empirically', 'disprove', 'necessarily', 'wouldn', 'nor']
Epoch 2/2: 46%|████▌ | 15699/34343 [3:39:30<37:02:00, 7.15s/it]
Epoch 2 Batch 15700 loss: 2.1161015033721924
Epoch 2/2: 46%|████▌ | 15700/34343 [3:39:31<26:55:43, 5.20s/it]
Closest words to the center word less: ['less', 'lifes', 'more', 'cheaper', 'thicker', 'softer', 'viscous', 'than', 'hotter', 'denser']
Epoch 2/2: 46%|████▌ | 15799/34343 [3:41:09<2:42:23, 1.90it/s]
Epoch 2 Batch 15800 loss: 2.139280080795288
Epoch 2/2: 46%|████▌ | 15800/34343 [3:41:09<2:57:06, 1.74it/s]
Closest words to the center word to: ['to', 'findable', 'inability', 'able', 'unable', 'obliged', 'prev', 'willing', 'stimulate', 'attempt']
Epoch 2/2: 46%|████▋ | 15899/34343 [3:43:03<1:25:23, 3.60it/s]
Epoch 2 Batch 15900 loss: 2.098975658416748
Epoch 2/2: 46%|████▋ | 15900/34343 [3:43:04<2:06:48, 2.42it/s]
Closest words to the center word screen: ['screen', 'bitmap', 'ipf', 'backlit', 'scrolling', 'playstation', 'gba', 'raster', 'clicking', 'rgb']
Epoch 2/2: 47%|████▋ | 15999/34343 [3:44:43<1:49:17, 2.80it/s]
Epoch 2 Batch 16000 loss: 2.151726722717285
Epoch 2/2: 47%|████▋ | 16000/34343 [3:44:44<2:29:53, 2.04it/s]
Closest words to the center word speed: ['speed', 'speeds', 'voltage', 'velocity', 'throughput', 'torque', 'subsonic', 'mbit', 'mhz', 'voltages']
Epoch 2/2: 47%|████▋ | 16099/34343 [3:46:49<7:16:01, 1.43s/it]
Epoch 2 Batch 16100 loss: 2.0663247108459473
Epoch 2/2: 47%|████▋ | 16100/34343 [3:46:50<6:08:33, 1.21s/it]
Closest words to the center word libraries: ['libraries', 'cygwin', 'compilers', 'netbsd', 'findable', 'gpled', 'browsers', 'directories', 'recompilation', 'gnu']
Epoch 2/2: 47%|████▋ | 16199/34343 [3:48:33<1:56:08, 2.60it/s]
Epoch 2 Batch 16200 loss: 2.0803465843200684
Epoch 2/2: 47%|████▋ | 16200/34343 [3:48:34<2:36:48, 1.93it/s]
Closest words to the center word its: ['its', 'ifrcs', 'ifad', 'their', 'icrm', 'ifc', 'iom', 'findable', 'nonsignatory', 'iho']
Epoch 2/2: 47%|████▋ | 16299/34343 [3:50:22<1:54:51, 2.62it/s]
Epoch 2 Batch 16300 loss: 2.09684681892395
Epoch 2/2: 47%|████▋ | 16300/34343 [3:50:24<4:55:49, 1.02it/s]
Closest words to the center word decided: ['decided', 'refused', 'vowed', 'persuaded', 'wanted', 'opted', 'agreed', 'didn', 'announced', 'obliged']
Epoch 2/2: 48%|████▊ | 16399/34343 [3:52:12<1:27:55, 3.40it/s]
Epoch 2 Batch 16400 loss: 2.0894036293029785
Epoch 2/2: 48%|████▊ | 16400/34343 [3:52:40<42:56:31, 8.62s/it]
Closest words to the center word cathedral: ['cathedral', 'basilica', 'churchyard', 'sistine', 'yoannis', 'chapel', 'abbey', 'sepulchre', 'convent', 'hagia']
Epoch 2/2: 48%|████▊ | 16499/34343 [3:54:18<5:18:15, 1.07s/it]
Epoch 2 Batch 16500 loss: 2.095620632171631
Epoch 2/2: 48%|████▊ | 16500/34343 [3:54:19<5:20:31, 1.08s/it]
Closest words to the center word atoms: ['atoms', 'protons', 'covalent', 'electrons', 'orbitals', 'ions', 'neutrons', 'particles', 'hydrogen', 'molecules']
Epoch 2/2: 48%|████▊ | 16599/34343 [3:56:04<1:55:28, 2.56it/s]
Epoch 2 Batch 16600 loss: 2.1025757789611816
Epoch 2/2: 48%|████▊ | 16600/34343 [3:56:06<3:16:47, 1.50it/s]
Closest words to the center word an: ['an', 'iom', 'ifrcs', 'ifc', 'nonsignatory', 'unido', 'argumentum', 'laia', 'wmo', 'wtro']
Epoch 2/2: 49%|████▊ | 16699/34343 [3:57:51<1:32:37, 3.17it/s]
Epoch 2 Batch 16700 loss: 2.0925910472869873
Epoch 2/2: 49%|████▊ | 16700/34343 [3:57:51<2:09:48, 2.27it/s]
Closest words to the center word being: ['being', 'having', 'acutely', 'orally', 'divinely', 'universally', 'heretical', 'oxidizing', 'insoluble', 'amplify']
Epoch 2/2: 49%|████▉ | 16799/34343 [3:59:55<32:53:01, 6.75s/it]
Epoch 2 Batch 16800 loss: 2.0983142852783203
Epoch 2/2: 49%|████▉ | 16800/34343 [3:59:56<24:09:14, 4.96s/it]
Closest words to the center word a: ['a', 'pluriform', 'agave', 'newnode', 'insubstantial', 'keying', 'unital', 'prev', 'globicephala', 'enthalpy']
Epoch 2/2: 49%|████▉ | 16899/34343 [4:01:36<4:09:39, 1.16it/s]
Epoch 2 Batch 16900 loss: 2.0604052543640137
Epoch 2/2: 49%|████▉ | 16900/34343 [4:01:37<4:08:10, 1.17it/s]
Closest words to the center word of: ['of', 'ifrcs', 'ifad', 'rajonas', 'wtoo', 'unido', 'ifc', 'icrm', 'nazarene', 'wftu']
Epoch 2/2: 49%|████▉ | 16999/34343 [4:03:11<1:22:44, 3.49it/s]
Epoch 2 Batch 17000 loss: 2.0964388847351074
Epoch 2/2: 50%|████▉ | 17000/34343 [4:03:12<2:02:30, 2.36it/s]
Closest words to the center word area: ['area', 'sq', 'unpaved', 'runways', 'ecoregion', 'irrigated', 'subtropical', 'isthmus', 'km', 'kilometers']
Epoch 2/2: 50%|████▉ | 17099/34343 [4:04:46<1:10:31, 4.08it/s]
Epoch 2 Batch 17100 loss: 2.1100945472717285
Epoch 2/2: 50%|████▉ | 17100/34343 [4:04:47<1:53:03, 2.54it/s]
Closest words to the center word days: ['days', 'months', 'grt', 'weeks', 'hours', 'minutes', 'lifes', 'lasts', 'gregorian', 'friday']
Epoch 2/2: 50%|█████ | 17199/34343 [4:06:41<23:06:24, 4.85s/it]
Epoch 2 Batch 17200 loss: 2.0566067695617676
Epoch 2/2: 50%|█████ | 17200/34343 [4:06:42<17:16:30, 3.63s/it]
Closest words to the center word years: ['years', 'grt', 'decades', 'months', 'weeks', 'servicemales', 'availabilitymales', 'lifes', 'gwh', 'males']
Epoch 2/2: 50%|█████ | 17299/34343 [4:08:10<2:30:49, 1.88it/s]
Epoch 2 Batch 17300 loss: 2.074434280395508
Epoch 2/2: 50%|█████ | 17300/34343 [4:08:11<2:42:48, 1.74it/s]
Closest words to the center word core: ['core', 'cisc', 'zseries', 'xt', 'graphical', 'desktop', 'sparc', 'athlon', 'risc', 'microprocessor']
Epoch 2/2: 51%|█████ | 17399/34343 [4:09:55<5:27:25, 1.16s/it]
Epoch 2 Batch 17400 loss: 2.108968734741211
Epoch 2/2: 51%|█████ | 17400/34343 [4:09:55<4:51:27, 1.03s/it]
Closest words to the center word both: ['both', 'bilabial', 'mutually', 'mizrahi', 'respective', 'maronites', 'trigonometric', 'fricatives', 'subtraction', 'laminal']
Epoch 2/2: 51%|█████ | 17499/34343 [4:11:48<2:47:20, 1.68it/s]
Epoch 2 Batch 17500 loss: 2.0946757793426514
Epoch 2/2: 51%|█████ | 17500/34343 [4:11:49<2:59:41, 1.56it/s]
Closest words to the center word of: ['of', 'ifrcs', 'ifad', 'rajonas', 'wtoo', 'icrm', 'ifc', 'unido', 'akan', 'nazarene']
Epoch 2/2: 51%|█████ | 17599/34343 [4:13:39<12:51:04, 2.76s/it]
Epoch 2 Batch 17600 loss: 2.121558666229248
Epoch 2/2: 51%|█████ | 17600/34343 [4:13:40<10:11:19, 2.19s/it]
Closest words to the center word tag: ['tag', 'pngimage', 'mjs', 'mjd', 'cccc', 'bbbb', 'komm', 'findable', 'meine', 'jesu']
Epoch 2/2: 52%|█████▏ | 17699/34343 [4:15:14<1:47:47, 2.57it/s]
Epoch 2 Batch 17700 loss: 2.097524642944336
Epoch 2/2: 52%|█████▏ | 17700/34343 [4:15:15<2:19:00, 2.00it/s]
Closest words to the center word club: ['club', 'bruins', 'cyclopedia', 'texans', 'broncos', 'diamondbacks', 'stadium', 'vsl', 'sox', 'coppa']
Epoch 2/2: 52%|█████▏ | 17799/34343 [4:16:47<59:40, 4.62it/s]
Epoch 2 Batch 17800 loss: 2.089198589324951
Epoch 2/2: 52%|█████▏ | 17800/34343 [4:16:48<1:35:35, 2.88it/s]
Closest words to the center word those: ['those', 'lifes', 'felonies', 'consenting', 'neopagans', 'disapprove', 'upu', 'unido', 'nontrinitarian', 'denominations']
Epoch 2/2: 52%|█████▏ | 17899/34343 [4:18:00<59:40, 4.59it/s]
Epoch 2 Batch 17900 loss: 2.1561672687530518
Epoch 2/2: 52%|█████▏ | 17900/34343 [4:18:01<1:56:20, 2.36it/s]
Closest words to the center word moment: ['moment', 'dipole', 'newnode', 'tangent', 'eccentricity', 'velocity', 'prev', 'penumbra', 'rotational', 'hyperfocal']
Epoch 2/2: 52%|█████▏ | 17999/34343 [4:19:30<5:07:31, 1.13s/it]
Epoch 2 Batch 18000 loss: 2.089468002319336
Epoch 2/2: 52%|█████▏ | 18000/34343 [4:19:31<4:30:23, 1.01it/s]
Closest words to the center word mode: ['mode', 'bitmap', 'debugger', 'ipf', 'usb', 'cpu', 'processor', 'xt', 'scsi', 'asynchronous']
Epoch 2/2: 53%|█████▎ | 18099/34343 [4:20:44<2:01:01, 2.24it/s]
Epoch 2 Batch 18100 loss: 2.1045188903808594
Epoch 2/2: 53%|█████▎ | 18100/34343 [4:20:45<2:18:03, 1.96it/s]
Closest words to the center word created: ['created', 'pluriform', 'coined', 'unido', 'nonsignatory', 'popularized', 'invented', 'supplanted', 'founded', 'formed']
Epoch 2/2: 53%|█████▎ | 18199/34343 [4:21:56<59:45, 4.50it/s]
Epoch 2 Batch 18200 loss: 2.0475542545318604
Epoch 2/2: 53%|█████▎ | 18200/34343 [4:21:57<1:34:06, 2.86it/s]
Closest words to the center word is: ['is', 'refers', 'differentiable', 'satisfies', 'diffeomorphism', 'bijective', 'metrizable', 'converges', 'endomorphism', 'subgroup']
Epoch 2/2: 53%|█████▎ | 18299/34343 [4:23:07<56:31, 4.73it/s]
Epoch 2 Batch 18300 loss: 2.0971145629882812
Epoch 2/2: 53%|█████▎ | 18300/34343 [4:23:23<22:11:16, 4.98s/it]
Closest words to the center word furigana: ['furigana', 'hiragana', 'kanji', 'katakana', 'diacritic', 'perfective', 'digraphs', 'approximant', 'phonemes', 'devanagari']
Epoch 2/2: 54%|█████▎ | 18399/34343 [4:24:36<1:44:15, 2.55it/s]
Epoch 2 Batch 18400 loss: 2.1299948692321777
Epoch 2/2: 54%|█████▎ | 18400/34343 [4:24:37<2:34:48, 1.72it/s]
Closest words to the center word tel: ['tel', 'allafrica', 'icrm', 'rajons', 'coquitlam', 'universidade', 'ifad', 'unmibh', 'opcw', 'stadtbahn']
Epoch 2/2: 54%|█████▍ | 18499/34343 [4:25:56<1:21:16, 3.25it/s]
Epoch 2 Batch 18500 loss: 2.0718226432800293
Epoch 2/2: 54%|█████▍ | 18500/34343 [4:25:57<1:49:22, 2.41it/s]
Closest words to the center word against: ['against', 'ifrcs', 'unido', 'unmibh', 'prosecute', 'mughals', 'slobodan', 'libel', 'wco', 'invading']
Epoch 2/2: 54%|█████▍ | 18599/34343 [4:27:23<59:59, 4.37it/s]
Epoch 2 Batch 18600 loss: 2.0688459873199463
Epoch 2/2: 54%|█████▍ | 18600/34343 [4:27:24<1:37:17, 2.70it/s]
Closest words to the center word after: ['after', 'before', 'shortly', 'lasted', 'afterwards', 'afterward', 'thereafter', 'rafik', 'aegisthus', 'abruptly']
Epoch 2/2: 54%|█████▍ | 18699/34343 [4:29:09<6:09:38, 1.42s/it]
Epoch 2 Batch 18700 loss: 2.076733112335205
Epoch 2/2: 54%|█████▍ | 18700/34343 [4:29:10<5:07:04, 1.18s/it]
Closest words to the center word than: ['than', 'lifes', 'less', 'heavier', 'cheaper', 'sweeter', 'denser', 'thicker', 'considerably', 'faster']
Epoch 2/2: 55%|█████▍ | 18799/34343 [4:30:21<1:20:14, 3.23it/s]
Epoch 2 Batch 18800 loss: 2.106260061264038
Epoch 2/2: 55%|█████▍ | 18800/34343 [4:30:22<1:43:31, 2.50it/s]
Closest words to the center word has: ['has', 'hasn', 'ifrcs', 'have', 'had', 'pluriform', 'hadn', 'ifad', 'ifc', 'enjoys']
Epoch 2/2: 55%|█████▌ | 18899/34343 [4:31:32<57:20, 4.49it/s]
Epoch 2 Batch 18900 loss: 2.090738296508789
Epoch 2/2: 55%|█████▌ | 18900/34343 [4:31:32<1:28:23, 2.91it/s]
Closest words to the center word actor: ['actor', 'actress', 'footballer', 'comedian', 'cricketer', 'pngimage', 'comedienne', 'singer', 'dramatist', 'laureate']
Epoch 2/2: 55%|█████▌ | 18999/34343 [4:32:42<54:13, 4.72it/s]
Epoch 2 Batch 19000 loss: 2.079223394393921
Epoch 2/2: 55%|█████▌ | 19000/34343 [4:32:43<1:27:56, 2.91it/s]
Closest words to the center word employed: ['employed', 'dwt', 'used', 'trained', 'practiced', 'conscripted', 'invented', 'appointed', 'oxidizing', 'exploited']
Epoch 2/2: 56%|█████▌ | 19099/34343 [4:34:08<4:29:40, 1.06s/it]
Epoch 2 Batch 19100 loss: 2.087118625640869
Epoch 2/2: 56%|█████▌ | 19100/34343 [4:34:09<4:03:16, 1.04it/s]
Closest words to the center word primer: ['primer', 'ifrcs', 'findable', 'ifad', 'nonsignatory', 'ifc', 'erowid', 'rajonas', 'tutorial', 'radiology']
Epoch 2/2: 56%|█████▌ | 19199/34343 [4:35:18<1:11:42, 3.52it/s]
Epoch 2 Batch 19200 loss: 2.094693183898926
Epoch 2/2: 56%|█████▌ | 19200/34343 [4:35:19<1:39:26, 2.54it/s]
Closest words to the center word also: ['also', 'disambiguation', 'wmo', 'wftu', 'wtoo', 'yird', 'ifrcs', 'wcl', 'unido', 'ifad']
Epoch 2/2: 56%|█████▌ | 19299/34343 [4:36:27<54:34, 4.59it/s]
Epoch 2 Batch 19300 loss: 2.088292121887207
Epoch 2/2: 56%|█████▌ | 19300/34343 [4:36:28<1:26:57, 2.88it/s]
Closest words to the center word words: ['words', 'pronouns', 'nouns', 'verbs', 'cognates', 'adjectives', 'morphemes', 'digraphs', 'phonemes', 'consonants']
Epoch 2/2: 56%|█████▋ | 19399/34343 [4:37:40<53:26, 4.66it/s]
Epoch 2 Batch 19400 loss: 2.1207566261291504
Epoch 2/2: 56%|█████▋ | 19400/34343 [4:37:56<20:54:01, 5.04s/it]
Closest words to the center word usually: ['usually', 'typically', 'calcite', 'intravenous', 'circularly', 'hydride', 'often', 'unicellular', 'normally', 'waterborne']
Epoch 2/2: 57%|█████▋ | 19499/34343 [4:39:05<3:13:23, 1.28it/s]
Epoch 2 Batch 19500 loss: 2.0922622680664062
Epoch 2/2: 57%|█████▋ | 19500/34343 [4:39:05<3:06:51, 1.32it/s]
Closest words to the center word considerable: ['considerable', 'substantial', 'tremendous', 'significant', 'pluriform', 'decreased', 'huge', 'enormous', 'disproportionate', 'greater']
Epoch 2/2: 57%|█████▋ | 19599/34343 [4:40:16<1:02:09, 3.95it/s]
Epoch 2 Batch 19600 loss: 2.075504779815674
Epoch 2/2: 57%|█████▋ | 19600/34343 [4:40:17<1:48:26, 2.27it/s]
Closest words to the center word groups: ['groups', 'ethnic', 'abelian', 'homomorphisms', 'bamar', 'denominations', 'mestizo', 'amerindian', 'malayo', 'group']
Epoch 2/2: 57%|█████▋ | 19699/34343 [4:41:26<52:01, 4.69it/s]
Epoch 2 Batch 19700 loss: 2.104104518890381
Epoch 2/2: 57%|█████▋ | 19700/34343 [4:41:27<1:27:50, 2.78it/s]
Closest words to the center word trademark: ['trademark', 'license', 'copyleft', 'infringement', 'copyright', 'abandonware', 'gpl', 'kazaa', 'netbsd', 'fsf']
Epoch 2/2: 58%|█████▊ | 19799/34343 [4:42:54<19:40:54, 4.87s/it]
Epoch 2 Batch 19800 loss: 2.1101269721984863
Epoch 2/2: 58%|█████▊ | 19800/34343 [4:42:55<14:32:43, 3.60s/it]
Closest words to the center word sword: ['sword', 'tamarin', 'spear', 'excalibur', 'diomedes', 'dresses', 'lyre', 'hilt', 'wakizashi', 'uther']
Epoch 2/2: 58%|█████▊ | 19899/34343 [4:44:04<2:03:31, 1.95it/s]
Epoch 2 Batch 19900 loss: 2.1287410259246826
Epoch 2/2: 58%|█████▊ | 19900/34343 [4:44:04<2:16:28, 1.76it/s]
Closest words to the center word three: ['gwh', 'grt', 'pngimage', 'twh', 'kwh', 'cyg', 'mjs', 'hbk', 'sfg', 'lup']
Epoch 2/2: 58%|█████▊ | 19999/34343 [4:45:15<54:44, 4.37it/s]
Epoch 2 Batch 20000 loss: 2.0664329528808594
Epoch 2/2: 58%|█████▊ | 20000/34343 [4:45:16<1:26:05, 2.78it/s]
Closest words to the center word ironic: ['ironic', 'epistolary', 'antithesis', 'sarcastic', 'deprecating', 'falsifiability', 'monistic', 'bhagavad', 'arguable', 'retelling']
Epoch 2/2: 59%|█████▊ | 20099/34343 [4:46:28<50:25, 4.71it/s]
Epoch 2 Batch 20100 loss: 2.0766873359680176
Epoch 2/2: 59%|█████▊ | 20100/34343 [4:46:29<1:19:26, 2.99it/s]
Closest words to the center word following: ['following', 'gregorian', 'leap', 'rafik', 'fao', 'bloodiest', 'williamite', 'listing', 'preceding', 'pseudocode']
Epoch 2/2: 59%|█████▉ | 20199/34343 [4:47:57<10:08:52, 2.58s/it]
Epoch 2 Batch 20200 loss: 2.061518669128418
Epoch 2/2: 59%|█████▉ | 20200/34343 [4:47:57<7:51:39, 2.00s/it]
Closest words to the center word links: ['links', 'webelements', 'wmo', 'icrm', 'external', 'allafrica', 'nonsignatory', 'ifrcs', 'wtoo', 'ifc']
Epoch 2/2: 59%|█████▉ | 20299/34343 [4:49:07<1:24:28, 2.77it/s]
Epoch 2 Batch 20300 loss: 2.0836377143859863
Epoch 2/2: 59%|█████▉ | 20300/34343 [4:49:08<1:45:04, 2.23it/s]
Closest words to the center word malaysia: ['malaysia', 'tuvalu', 'allafrica', 'rupee', 'nepal', 'dinar', 'bissau', 'swaziland', 'tajikistan', 'laos']
Epoch 2/2: 59%|█████▉ | 20399/34343 [4:50:18<49:53, 4.66it/s]
Epoch 2 Batch 20400 loss: 2.1162683963775635
Epoch 2/2: 59%|█████▉ | 20400/34343 [4:50:19<1:24:02, 2.77it/s]
Closest words to the center word ten: ['ten', 'grt', 'sixty', 'forty', 'fifteen', 'twelve', 'thirty', 'totaling', 'hundred', 'eleven']
Epoch 2/2: 60%|█████▉ | 20499/34343 [4:51:28<48:52, 4.72it/s]
Epoch 2 Batch 20500 loss: 2.0981311798095703
Epoch 2/2: 60%|█████▉ | 20500/34343 [4:51:29<1:22:32, 2.79it/s]
Closest words to the center word external: ['webelements', 'icrm', 'external', 'links', 'ifc', 'ifrcs', 'nonsignatory', 'ibrd', 'wmo', 'iom']
Epoch 2/2: 60%|█████▉ | 20599/34343 [4:52:57<5:29:22, 1.44s/it]
Epoch 2 Batch 20600 loss: 2.108396053314209
Epoch 2/2: 60%|█████▉ | 20600/34343 [4:52:58<4:41:32, 1.23s/it]
Closest words to the center word u: ['u', 'poz', 'polskiej', 'codepoint', 'rzeczypospolitej', 'rightarrow', 'forall', 'textrm', 'dz', 'ustawa']
Epoch 2/2: 60%|██████ | 20699/34343 [4:54:06<53:51, 4.22it/s]
Epoch 2 Batch 20700 loss: 2.1024155616760254
Epoch 2/2: 60%|██████ | 20700/34343 [4:54:07<1:31:43, 2.48it/s]
Closest words to the center word version: ['version', 'ipf', 'versions', 'bwv', 'edition', 'imac', 'remastered', 'athlon', 'cccc', 'wikisource']
Epoch 2/2: 61%|██████ | 20799/34343 [4:55:16<50:02, 4.51it/s]
Epoch 2 Batch 20800 loss: 2.1139543056488037
Epoch 2/2: 61%|██████ | 20800/34343 [4:55:17<1:18:53, 2.86it/s]
Closest words to the center word new: ['new', 'york', 'schuster', 'ny', 'giroux', 'farrar', 'ticker', 'bangor', 'dunedin', 'straus']
Epoch 2/2: 61%|██████ | 20899/34343 [4:56:26<47:12, 4.75it/s]
Epoch 2 Batch 20900 loss: 2.1296777725219727
Epoch 2/2: 61%|██████ | 20900/34343 [4:56:26<1:18:38, 2.85it/s]
Closest words to the center word allegedly: ['unido', 'wco', 'ifrcs', 'unmibh', 'allegedly', 'hazmi', 'unctad', 'wftu', 'zarqawi', 'aegisthus']
Epoch 2/2: 61%|██████ | 20999/34343 [4:57:52<1:30:38, 2.45it/s]
Epoch 2 Batch 21000 loss: 2.129845142364502
Epoch 2/2: 61%|██████ | 21000/34343 [4:57:52<1:47:01, 2.08it/s]
Closest words to the center word black: ['callithrix', 'black', 'leontopithecus', 'tamarin', 'marmoset', 'saguinus', 'eulemur', 'dasyprocta', 'mico', 'capuchin']
Epoch 2/2: 61%|██████▏ | 21099/34343 [4:59:03<51:58, 4.25it/s]
Epoch 2 Batch 21100 loss: 2.1261391639709473
Epoch 2/2: 61%|██████▏ | 21100/34343 [4:59:03<1:19:53, 2.76it/s]
Closest words to the center word to: ['to', 'findable', 'inability', 'triadic', 'prev', 'unable', 'able', 'suspend', 'willing', 'unwilling']
Epoch 2/2: 62%|██████▏ | 21199/34343 [5:00:12<47:33, 4.61it/s]
Epoch 2 Batch 21200 loss: 2.128490686416626
Epoch 2/2: 62%|██████▏ | 21200/34343 [5:00:13<1:19:14, 2.76it/s]
Closest words to the center word of: ['of', 'ifrcs', 'wtoo', 'nazarene', 'rajonas', 'ifad', 'akan', 'bentheim', 'mycological', 'icrm']
Epoch 2/2: 62%|██████▏ | 21299/34343 [5:01:38<6:39:27, 1.84s/it]
Epoch 2 Batch 21300 loss: 2.0650970935821533
Epoch 2/2: 62%|██████▏ | 21300/34343 [5:01:39<5:25:22, 1.50s/it]
Closest words to the center word participated: ['participated', 'starred', 'competed', 'culminated', 'fought', 'embroiled', 'resulted', 'engaged', 'campaigned', 'wco']
Epoch 2/2: 62%|██████▏ | 21399/34343 [5:02:47<1:16:45, 2.81it/s]
Epoch 2 Batch 21400 loss: 2.1159958839416504
Epoch 2/2: 62%|██████▏ | 21400/34343 [5:02:48<1:37:51, 2.20it/s]
Closest words to the center word lively: ['lively', 'tikka', 'nightlife', 'natured', 'flavoured', 'morbid', 'thriving', 'sentimental', 'vibrant', 'twinned']
Epoch 2/2: 63%|██████▎ | 21499/34343 [5:03:57<47:25, 4.51it/s]
Epoch 2 Batch 21500 loss: 2.096832513809204
Epoch 2/2: 63%|██████▎ | 21500/34343 [5:03:58<1:17:58, 2.75it/s]
Closest words to the center word work: ['work', 'rediscovery', 'doctorate', 'goethe', 'phenomenology', 'virtuosity', 'insights', 'husserl', 'contribution', 'dissertation']
Epoch 2/2: 63%|██████▎ | 21599/34343 [5:05:09<45:46, 4.64it/s]
Epoch 2 Batch 21600 loss: 2.1141245365142822
Epoch 2/2: 63%|██████▎ | 21600/34343 [5:05:10<1:14:38, 2.85it/s]
Closest words to the center word celebrated: ['celebrated', 'feast', 'commemorated', 'solstice', 'canonized', 'beltane', 'liturgics', 'imbolc', 'tishri', 'midsummer']
Epoch 2/2: 63%|██████▎ | 21699/34343 [5:06:36<5:01:08, 1.43s/it]
Epoch 2 Batch 21700 loss: 2.095954418182373
Epoch 2/2: 63%|██████▎ | 21700/34343 [5:06:37<4:11:05, 1.19s/it]
Closest words to the center word magnificent: ['magnificent', 'borghese', 'yoannis', 'sistine', 'piazza', 'basilica', 'piccadilly', 'sarcophagus', 'erected', 'cathedral']
Epoch 2/2: 63%|██████▎ | 21799/34343 [5:07:47<58:40, 3.56it/s]
Epoch 2 Batch 21800 loss: 2.1025989055633545
Epoch 2/2: 63%|██████▎ | 21800/34343 [5:07:48<1:19:41, 2.62it/s]
Closest words to the center word tied: ['tied', 'dealt', 'homeomorphic', 'aligned', 'connected', 'isomorphic', 'awarded', 'reconcile', 'replayed', 'rewarded']
Epoch 2/2: 64%|██████▍ | 21899/34343 [5:08:57<45:32, 4.55it/s]
Epoch 2 Batch 21900 loss: 2.114682912826538
Epoch 2/2: 64%|██████▍ | 21900/34343 [5:08:58<1:12:55, 2.84it/s]
Closest words to the center word narrowly: ['narrowly', 'landslide', 'bingu', 'bolsheviks', 'kamenev', 'mwai', 'karzai', 'reelected', 'votes', 'fianna']
Epoch 2/2: 64%|██████▍ | 21999/34343 [5:10:11<44:19, 4.64it/s]
Epoch 2 Batch 22000 loss: 2.0741190910339355
Epoch 2/2: 64%|██████▍ | 22000/34343 [5:10:12<1:10:52, 2.90it/s]
Closest words to the center word cost: ['cost', 'kwh', 'gwh', 'throughput', 'expenditures', 'costs', 'bandwidth', 'speeds', 'twh', 'latency']
Epoch 2/2: 64%|██████▍ | 22099/34343 [5:11:39<2:40:51, 1.27it/s]
Epoch 2 Batch 22100 loss: 2.089301586151123
Epoch 2/2: 64%|██████▍ | 22100/34343 [5:11:39<2:34:29, 1.32it/s]
Closest words to the center word received: ['received', 'honorary', 'graduated', 'earned', 'doctorate', 'garnered', 'awarded', 'won', 'gained', 'attended']
Epoch 2/2: 65%|██████▍ | 22199/34343 [5:12:50<49:29, 4.09it/s]
Epoch 2 Batch 22200 loss: 2.1115972995758057
Epoch 2/2: 65%|██████▍ | 22200/34343 [5:12:50<1:17:49, 2.60it/s]
Closest words to the center word feller: ['leiserson', 'cormen', 'cricketer', 'elke', 'bckgr', 'peckinpah', 'astaire', 'footballer', 'cullen', 'feller']
Epoch 2/2: 65%|██████▍ | 22299/34343 [5:14:05<44:22, 4.52it/s]
Epoch 2 Batch 22300 loss: 2.0672473907470703
Epoch 2/2: 65%|██████▍ | 22300/34343 [5:14:05<1:12:57, 2.75it/s]
Closest words to the center word love: ['love', 'totoro', 'lust', 'nnhilde', 'passionate', 'loves', 'vanity', 'thy', 'unrequited', 'wagoner']
Epoch 2/2: 65%|██████▌ | 22399/34343 [5:15:32<17:31:29, 5.28s/it]
Epoch 2 Batch 22400 loss: 2.09804368019104
Epoch 2/2: 65%|██████▌ | 22400/34343 [5:15:33<13:00:50, 3.92s/it]
Closest words to the center word one: ['gwh', 'kwh', 'pngimage', 'hbk', 'grt', 'mjw', 'twh', 'mjs', 'cyg', 'sfg']
Epoch 2/2: 66%|██████▌ | 22499/34343 [5:16:43<1:35:35, 2.07it/s]
Epoch 2 Batch 22500 loss: 2.1084938049316406
Epoch 2/2: 66%|██████▌ | 22500/34343 [5:16:44<1:54:48, 1.72it/s]
Closest words to the center word suspicious: ['suspicious', 'wary', 'intellectually', 'underestimated', 'consummated', 'exacerbated', 'harshly', 'overdose', 'aware', 'incapable']
Epoch 2/2: 66%|██████▌ | 22599/34343 [5:18:21<59:02, 3.32it/s]
Epoch 2 Batch 22600 loss: 2.0844850540161133
Epoch 2/2: 66%|██████▌ | 22600/34343 [5:18:21<1:25:20, 2.29it/s]
Closest words to the center word change: ['change', 'desertification', 'enthalpy', 'changes', 'hazardous', 'variability', 'biodiversity', 'findable', 'pollutants', 'drift']
Epoch 2/2: 66%|██████▌ | 22699/34343 [5:19:58<51:54, 3.74it/s]
Epoch 2 Batch 22700 loss: 2.1036622524261475
Epoch 2/2: 66%|██████▌ | 22700/34343 [5:19:58<1:17:43, 2.50it/s]
Closest words to the center word said: ['said', 'replied', 'rumoured', 'moneo', 'quipped', 'glad', 'hafsa', 'told', 'remarried', 'believed']
Epoch 2/2: 66%|██████▋ | 22799/34343 [5:22:12<10:56:27, 3.41s/it]
Epoch 2 Batch 22800 loss: 2.102323293685913
Epoch 2/2: 66%|██████▋ | 22800/34343 [5:22:13<8:22:27, 2.61s/it]
Closest words to the center word heretic: ['heretic', 'divinely', 'patriarch', 'habakkuk', 'forgiveness', 'prophet', 'absolution', 'marcion', 'arius', 'pius']
Epoch 2/2: 67%|██████▋ | 22899/34343 [5:23:48<57:46, 3.30it/s]
Epoch 2 Batch 22900 loss: 2.1062870025634766
Epoch 2/2: 67%|██████▋ | 22900/34343 [5:23:49<1:28:42, 2.15it/s]
Closest words to the center word by: ['by', 'ifrcs', 'leiserson', 'maaouya', 'icrm', 'unido', 'ifc', 'ifad', 'rajonas', 'nonsignatory']
Epoch 2/2: 67%|██████▋ | 22999/34343 [5:25:26<56:11, 3.37it/s]
Epoch 2 Batch 23000 loss: 2.136038303375244
Epoch 2/2: 67%|██████▋ | 23000/34343 [5:25:27<1:20:00, 2.36it/s]
Closest words to the center word computers: ['computers', 'cpus', 'microcomputer', 'consoles', 'xt', 'macs', 'peripherals', 'scsi', 'microprocessors', 'powerpc']
Epoch 2/2: 67%|██████▋ | 23099/34343 [5:27:11<55:20, 3.39it/s]
Epoch 2 Batch 23100 loss: 2.081343173980713
Epoch 2/2: 67%|██████▋ | 23100/34343 [5:27:11<1:20:10, 2.34it/s]
Closest words to the center word accuses: ['accuses', 'wco', 'unido', 'wftu', 'unmibh', 'wmo', 'unctad', 'weu', 'wtoo', 'wcl']
Epoch 2/2: 68%|██████▊ | 23199/34343 [5:29:22<2:39:13, 1.17it/s]
Epoch 2 Batch 23200 loss: 2.132946491241455
Epoch 2/2: 68%|██████▊ | 23200/34343 [5:29:23<2:33:21, 1.21it/s]
Closest words to the center word in: ['in', 'kwh', 'gwh', 'annexes', 'nfc', 'rajonas', 'sfg', 'wct', 'births', 'anh']
Epoch 2/2: 68%|██████▊ | 23299/34343 [5:31:01<1:22:42, 2.23it/s]
Epoch 2 Batch 23300 loss: 2.139177083969116
Epoch 2/2: 68%|██████▊ | 23300/34343 [5:31:02<1:44:21, 1.76it/s]
Closest words to the center word graded: ['dolomite', 'beets', 'cassava', 'montane', 'graded', 'lifes', 'broadleaf', 'humid', 'oxides', 'soluble']
Epoch 2/2: 68%|██████▊ | 23399/34343 [5:32:48<44:29, 4.10it/s]
Epoch 2 Batch 23400 loss: 2.080181121826172
Epoch 2/2: 68%|██████▊ | 23400/34343 [5:32:49<1:17:34, 2.35it/s]
Closest words to the center word god: ['god', 'yahweh', 'yhwh', 'brahman', 'allah', 'omnipotent', 'vishnu', 'almighty', 'forgiveness', 'incarnate']
Epoch 2/2: 68%|██████▊ | 23499/34343 [5:34:53<15:37:54, 5.19s/it]
Epoch 2 Batch 23500 loss: 2.0523595809936523
Epoch 2/2: 68%|██████▊ | 23500/34343 [5:34:54<11:53:46, 3.95s/it]
Closest words to the center word spots: ['spots', 'leontopithecus', 'isosceles', 'mantled', 'saguinus', 'tamarin', 'tailed', 'callithrix', 'grt', 'hexagonal']
Epoch 2/2: 69%|██████▊ | 23599/34343 [5:36:42<2:13:40, 1.34it/s]
Epoch 2 Batch 23600 loss: 2.092559814453125
Epoch 2/2: 69%|██████▊ | 23600/34343 [5:36:43<2:14:33, 1.33it/s]
Closest words to the center word need: ['need', 'intend', 'pluperfect', 'newnode', 'incentive', 'posteriori', 'want', 'factum', 'require', 'disprove']
Epoch 2/2: 69%|██████▉ | 23699/34343 [5:38:25<1:01:12, 2.90it/s]
Epoch 2 Batch 23700 loss: 2.08243465423584
Epoch 2/2: 69%|██████▉ | 23700/34343 [5:38:26<1:51:52, 1.59it/s]
Closest words to the center word electrolysis: ['electrolysis', 'halides', 'hydride', 'alkoxide', 'anode', 'nitric', 'phosphorylation', 'cathode', 'pyruvate', 'carbonyl']
Epoch 2/2: 69%|██████▉ | 23799/34343 [5:40:05<52:40, 3.34it/s]
Epoch 2 Batch 23800 loss: 2.127439498901367
Epoch 2/2: 69%|██████▉ | 23800/34343 [5:40:05<1:14:04, 2.37it/s]
Closest words to the center word benz: ['benz', 'daimler', 'audi', 'kwh', 'mercedes', 'gwh', 'bugatti', 'bmw', 'aston', 'twh']
Epoch 2/2: 70%|██████▉ | 23899/34343 [5:42:18<9:17:21, 3.20s/it]
Epoch 2 Batch 23900 loss: 2.15342116355896
Epoch 2/2: 70%|██████▉ | 23900/34343 [5:42:18<7:08:55, 2.46s/it]
Closest words to the center word bhutan: ['bhutan', 'allafrica', 'rupee', 'kitts', 'tuvalu', 'swaziland', 'dinar', 'escudo', 'tajikistan', 'chungcheong']
Epoch 2/2: 70%|██████▉ | 23999/34343 [5:44:02<1:31:50, 1.88it/s]
Epoch 2 Batch 24000 loss: 2.0733962059020996
Epoch 2/2: 70%|██████▉ | 24000/34343 [5:44:03<1:42:34, 1.68it/s]
Closest words to the center word flutes: ['flutes', 'tremolo', 'basses', 'cellos', 'harmonicas', 'woodwind', 'clarinets', 'clarinet', 'diatonic', 'contrabass']
Epoch 2/2: 70%|███████ | 24099/34343 [5:45:36<46:28, 3.67it/s]
Epoch 2 Batch 24100 loss: 2.1080574989318848
Epoch 2/2: 70%|███████ | 24100/34343 [5:45:36<1:17:58, 2.19it/s]
Closest words to the center word weaknesses: ['weaknesses', 'irritability', 'strengths', 'eyesight', 'melee', 'flaws', 'assumptions', 'tardive', 'inhibitors', 'myocardial']
Epoch 2/2: 70%|███████ | 24199/34343 [5:47:17<42:58, 3.93it/s]
Epoch 2 Batch 24200 loss: 2.142861843109131
Epoch 2/2: 70%|███████ | 24200/34343 [5:47:18<1:38:53, 1.71it/s]
Closest words to the center word scroll: ['scroll', 'polycarbonate', 'fretboard', 'platters', 'socket', 'rotor', 'cylindrical', 'keypad', 'fret', 'tubing']
Epoch 2/2: 71%|███████ | 24299/34343 [5:49:17<6:47:51, 2.44s/it]
Epoch 2 Batch 24300 loss: 2.1393821239471436
Epoch 2/2: 71%|███████ | 24300/34343 [5:49:18<5:29:12, 1.97s/it]
Closest words to the center word states: ['states', 'federated', 'emirates', 'micronesia', 'united', 'tuvalu', 'nations', 'seceded', 'oecs', 'eapc']
Epoch 2/2: 71%|███████ | 24399/34343 [5:50:51<1:09:01, 2.40it/s]
Epoch 2 Batch 24400 loss: 2.1135880947113037
Epoch 2/2: 71%|███████ | 24400/34343 [5:50:52<1:25:38, 1.94it/s]
Closest words to the center word under: ['under', 'auspices', 'gpl', 'mamluk', 'durrani', 'mughals', 'fatimid', 'salih', 'maaouya', 'tokugawa']
Epoch 2/2: 71%|███████▏ | 24499/34343 [5:52:26<49:12, 3.33it/s]
Epoch 2 Batch 24500 loss: 2.0778377056121826
Epoch 2/2: 71%|███████▏ | 24500/34343 [5:52:27<1:10:20, 2.33it/s]
Closest words to the center word changed: ['changed', 'shifted', 'reverted', 'findable', 'faded', 'altered', 'ratified', 'traced', 'renamed', 'recovered']
Epoch 2/2: 72%|███████▏ | 24599/34343 [5:54:01<48:12, 3.37it/s]
Epoch 2 Batch 24600 loss: 2.0834269523620605
Epoch 2/2: 72%|███████▏ | 24600/34343 [5:54:02<1:11:41, 2.27it/s]
Closest words to the center word brown: ['callithrix', 'eulemur', 'brown', 'leontopithecus', 'tamias', 'tamarin', 'aquilegia', 'mesoplodon', 'haliotis', 'beaked']
Epoch 2/2: 72%|███████▏ | 24699/34343 [5:56:09<4:14:31, 1.58s/it]
Epoch 2 Batch 24700 loss: 2.1234207153320312
Epoch 2/2: 72%|███████▏ | 24700/34343 [5:56:09<3:39:53, 1.37s/it]
Closest words to the center word had: ['had', 'hadn', 'fathered', 'aegisthus', 'thyestes', 'hath', 'hasn', 'clytemnestra', 'has', 'betrothed']
Epoch 2/2: 72%|███████▏ | 24799/34343 [5:57:42<55:55, 2.84it/s]
Epoch 2 Batch 24800 loss: 2.1185073852539062
Epoch 2/2: 72%|███████▏ | 24800/34343 [5:57:42<1:10:05, 2.27it/s]
Closest words to the center word card: ['card', 'cards', 'nfc', 'debit', 'afc', 'betting', 'playoffs', 'bobble', 'newnode', 'gba']
Epoch 2/2: 73%|███████▎ | 24899/34343 [5:59:12<42:06, 3.74it/s]
Epoch 2 Batch 24900 loss: 2.102382183074951
Epoch 2/2: 73%|███████▎ | 24900/34343 [5:59:13<1:05:01, 2.42it/s]
Closest words to the center word in: ['in', 'kwh', 'gwh', 'anh', 'annexes', 'births', 'throughout', 'anterselva', 'twh', 'availabilitymales']
Epoch 2/2: 73%|███████▎ | 24999/34343 [6:00:43<1:32:59, 1.67it/s]
Epoch 2 Batch 25000 loss: 2.1095993518829346
Epoch 2/2: 73%|███████▎ | 25000/34343 [6:01:05<17:56:32, 6.91s/it]
Closest words to the center word years: ['years', 'grt', 'decades', 'months', 'servicemales', 'weeks', 'totaling', 'availabilitymales', 'injures', 'lifes']
Epoch 2/2: 73%|███████▎ | 25099/34343 [6:02:33<1:52:50, 1.37it/s]
Epoch 2 Batch 25100 loss: 2.1300365924835205
Epoch 2/2: 73%|███████▎ | 25100/34343 [6:02:34<1:52:17, 1.37it/s]
Closest words to the center word hscsd: ['bbbb', 'nonsignatory', 'iom', 'wavelet', 'cccc', 'asynchronous', 'ifrcs', 'opcw', 'bilinear', 'sys']
Epoch 2/2: 73%|███████▎ | 25199/34343 [6:04:00<43:30, 3.50it/s]
Epoch 2 Batch 25200 loss: 2.0810372829437256
Epoch 2/2: 73%|███████▎ | 25200/34343 [6:04:02<1:36:25, 1.58it/s]
Closest words to the center word are: ['are', 'were', 'aren', 'unicellular', 'protists', 'celled', 'differ', 'rectangles', 'consist', 'solutes']
Epoch 2/2: 74%|███████▎ | 25299/34343 [6:05:35<43:32, 3.46it/s]
Epoch 2 Batch 25300 loss: 2.08467960357666
Epoch 2/2: 74%|███████▎ | 25300/34343 [6:05:37<1:24:27, 1.78it/s]
Closest words to the center word checking: ['checking', 'chaining', 'newnode', 'prev', 'asynchronous', 'firstnode', 'findable', 'avl', 'pointers', 'macros']
Epoch 2/2: 74%|███████▍ | 25399/34343 [6:07:31<13:00:05, 5.23s/it]
Epoch 2 Batch 25400 loss: 2.134082794189453
Epoch 2/2: 74%|███████▍ | 25400/34343 [6:07:32<9:37:47, 3.88s/it]
Closest words to the center word constitution: ['constitution', 'bicameral', 'ratified', 'unicameral', 'legislature', 'referendum', 'constitutional', 'amendment', 'monarchy', 'eldr']
Epoch 2/2: 74%|███████▍ | 25499/34343 [6:09:05<1:06:59, 2.20it/s]
Epoch 2 Batch 25500 loss: 2.1233327388763428
Epoch 2/2: 74%|███████▍ | 25500/34343 [6:09:06<1:57:29, 1.25it/s]
Closest words to the center word project: ['nonsignatory', 'ifrcs', 'ifad', 'project', 'ifc', 'iom', 'sourceforge', 'idb', 'looksmart', 'gnat']
Epoch 2/2: 75%|███████▍ | 25599/34343 [6:10:40<44:31, 3.27it/s]
Epoch 2 Batch 25600 loss: 2.1135940551757812
Epoch 2/2: 75%|███████▍ | 25600/34343 [6:10:40<1:05:59, 2.21it/s]
Closest words to the center word valid: ['valid', 'bijective', 'provable', 'metrizable', 'ponens', 'refutable', 'unital', 'differentiable', 'surjective', 'enumerable']
Epoch 2/2: 75%|███████▍ | 25699/34343 [6:12:17<39:27, 3.65it/s]
Epoch 2 Batch 25700 loss: 2.1290810108184814
Epoch 2/2: 75%|███████▍ | 25700/34343 [6:12:18<1:14:39, 1.93it/s]
Closest words to the center word bobby: ['finalist', 'bobby', 'kreutzmann', 'satchel', 'bruins', 'footballer', 'bourque', 'lesh', 'foxx', 'darrell']
Epoch 2/2: 75%|███████▌ | 25799/34343 [6:14:11<2:23:53, 1.01s/it]
Epoch 2 Batch 25800 loss: 2.092529535293579
Epoch 2/2: 75%|███████▌ | 25800/34343 [6:14:11<2:12:11, 1.08it/s]
Closest words to the center word a: ['a', 'agave', 'pluriform', 'globicephala', 'lemur', 'keying', 'insubstantial', 'groupoid', 'newnode', 'callithrix']
Epoch 2/2: 75%|███████▌ | 25899/34343 [6:15:40<43:13, 3.26it/s]
Epoch 2 Batch 25900 loss: 2.114318370819092
Epoch 2/2: 75%|███████▌ | 25900/34343 [6:15:41<1:00:17, 2.33it/s]
Closest words to the center word they: ['they', 'capybaras', 'we', 'you', 'liars', 'aediles', 'gesserit', 'feeders', 'matres', 'findable']
Epoch 2/2: 76%|███████▌ | 25999/34343 [6:17:15<35:20, 3.94it/s]
Epoch 2 Batch 26000 loss: 2.0930535793304443
Epoch 2/2: 76%|███████▌ | 26000/34343 [6:17:16<52:30, 2.65it/s]
Closest words to the center word ethics: ['ethics', 'cognitivism', 'egoism', 'intuitionism', 'ethical', 'jurisprudence', 'epistemology', 'reductionism', 'objectivism', 'relativism']
Epoch 2/2: 76%|███████▌ | 26099/34343 [6:19:10<15:07:11, 6.60s/it]
Epoch 2 Batch 26100 loss: 2.076605796813965
Epoch 2/2: 76%|███████▌ | 26100/34343 [6:19:11<11:09:00, 4.87s/it]
Closest words to the center word june: ['june', 'gwh', 'january', 'april', 'july', 'february', 'august', 'november', 'kwh', 'december']
Epoch 2/2: 76%|███████▋ | 26199/34343 [6:20:58<2:05:28, 1.08it/s]
Epoch 2 Batch 26200 loss: 2.129329204559326
Epoch 2/2: 76%|███████▋ | 26200/34343 [6:20:59<1:57:37, 1.15it/s]
Closest words to the center word studies: ['studies', 'ethologists', 'therapies', 'maxillofacial', 'subfields', 'anthropology', 'psychologists', 'informatics', 'critiques', 'physiology']
Epoch 2/2: 77%|███████▋ | 26299/34343 [6:22:31<47:39, 2.81it/s]
Epoch 2 Batch 26300 loss: 2.129953384399414
Epoch 2/2: 77%|███████▋ | 26300/34343 [6:22:32<1:04:33, 2.08it/s]
Closest words to the center word the: ['ifrcs', 'pluriform', 'nonsignatory', 'tamarin', 'leontopithecus', 'ifad', 'the', 'ifc', 'iom', 'saguinus']
Epoch 2/2: 77%|███████▋ | 26399/34343 [6:23:59<33:27, 3.96it/s]
Epoch 2 Batch 26400 loss: 2.112628936767578
Epoch 2/2: 77%|███████▋ | 26400/34343 [6:23:59<52:50, 2.51it/s]
Closest words to the center word told: ['told', 'swaim', 'tells', 'moneo', 'replied', 'complains', 'distraught', 'joked', 'afraid', 'hafsa']
Epoch 2/2: 77%|███████▋ | 26499/34343 [6:26:01<11:06:50, 5.10s/it]
Epoch 2 Batch 26500 loss: 2.110123872756958
Epoch 2/2: 77%|███████▋ | 26500/34343 [6:26:02<8:16:45, 3.80s/it]
Closest words to the center word brigades: ['brigades', 'battalions', 'battalion', 'brigade', 'ifrcs', 'einsatzgruppen', 'waffen', 'regiment', 'peacekeeping', 'iom']
Epoch 2/2: 77%|███████▋ | 26599/34343 [6:27:37<1:26:41, 1.49it/s]
Epoch 2 Batch 26600 loss: 2.069441795349121
Epoch 2/2: 77%|███████▋ | 26600/34343 [6:27:38<1:34:16, 1.37it/s]
Closest words to the center word mathematician: ['mathematician', 'physicist', 'astronomer', 'mineralogist', 'physiologist', 'zoologist', 'philosopher', 'xaver', 'neurologist', 'philologist']
Epoch 2/2: 78%|███████▊ | 26699/34343 [6:29:27<42:04, 3.03it/s]
Epoch 2 Batch 26700 loss: 2.099580764770508
Epoch 2/2: 78%|███████▊ | 26700/34343 [6:29:27<57:48, 2.20it/s]
Closest words to the center word probability: ['probability', 'cardinality', 'polynomial', 'mathfrak', 'hamiltonian', 'polynomials', 'entropy', 'lebesgue', 'integrable', 'widehat']
Epoch 2/2: 78%|███████▊ | 26799/34343 [6:30:58<36:36, 3.44it/s]
Epoch 2 Batch 26800 loss: 2.114670515060425
Epoch 2/2: 78%|███████▊ | 26800/34343 [6:30:59<54:35, 2.30it/s]
Closest words to the center word fact: ['fact', 'provable', 'epimenides', 'unsurprising', 'rooted', 'unital', 'testable', 'eukaryotes', 'believe', 'misconception']
Epoch 2/2: 78%|███████▊ | 26899/34343 [6:33:00<6:26:43, 3.12s/it]
Epoch 2 Batch 26900 loss: 2.118748188018799
Epoch 2/2: 78%|███████▊ | 26900/34343 [6:33:01<5:10:20, 2.50s/it]
Closest words to the center word the: ['pluriform', 'ifrcs', 'leontopithecus', 'tamarin', 'the', 'nonsignatory', 'gangetic', 'saguinus', 'ifad', 'callithrix']
Epoch 2/2: 79%|███████▊ | 26999/34343 [6:34:20<44:27, 2.75it/s]
Epoch 2 Batch 27000 loss: 2.0952489376068115
Epoch 2/2: 79%|███████▊ | 27000/34343 [6:34:21<54:40, 2.24it/s]
Closest words to the center word own: ['own', 'findable', 'respective', 'dealings', 'abilities', 'humility', 'egoism', 'countrymen', 'tireless', 'teg']
Epoch 2/2: 79%|███████▉ | 27099/34343 [6:35:32<27:25, 4.40it/s]
Epoch 2 Batch 27100 loss: 2.113372802734375
Epoch 2/2: 79%|███████▉ | 27100/34343 [6:35:33<42:06, 2.87it/s]
Closest words to the center word left: ['left', 'otimes', 'arctan', 'right', 'cdot', 'vec', 'rangle', 'kx', 'cdots', 'operatorname']
Epoch 2/2: 79%|███████▉ | 27199/34343 [6:36:44<25:21, 4.69it/s]
Epoch 2 Batch 27200 loss: 2.0929782390594482
Epoch 2/2: 79%|███████▉ | 27200/34343 [6:36:45<43:00, 2.77it/s]
Closest words to the center word bit: ['bit', 'kbit', 'pngimage', 'xt', 'mbit', 'megabyte', 'kb', 'bytes', 'kilobytes', 'mjs']
Epoch 2/2: 79%|███████▉ | 27299/34343 [6:38:12<2:47:55, 1.43s/it]
Epoch 2 Batch 27300 loss: 2.0733766555786133
Epoch 2/2: 79%|███████▉ | 27300/34343 [6:38:13<2:30:21, 1.28s/it]
Closest words to the center word suitable: ['suitable', 'optimized', 'feedstock', 'computationally', 'unsuitable', 'transshipment', 'consuming', 'suited', 'glycogen', 'metrizable']
Epoch 2/2: 80%|███████▉ | 27399/34343 [6:39:52<50:22, 2.30it/s]
Epoch 2 Batch 27400 loss: 2.10170841217041
Epoch 2/2: 80%|███████▉ | 27400/34343 [6:39:53<59:28, 1.95it/s]
Closest words to the center word cuttlefish: ['cuttlefish', 'beets', 'cassava', 'infraorder', 'lepidoptera', 'waterborne', 'secrete', 'lemurs', 'suborder', 'soybeans']
Epoch 2/2: 80%|████████ | 27499/34343 [6:41:49<30:21, 3.76it/s]
Epoch 2 Batch 27500 loss: 2.0607285499572754
Epoch 2/2: 80%|████████ | 27500/34343 [6:41:50<46:29, 2.45it/s]
Closest words to the center word equatorial: ['equatorial', 'bissau', 'allafrica', 'verde', 'faso', 'gambia', 'landlocked', 'ivoire', 'escudo', 'brazzaville']
Epoch 2/2: 80%|████████ | 27599/34343 [6:43:28<29:33, 3.80it/s]
Epoch 2 Batch 27600 loss: 2.1012046337127686
Epoch 2/2: 80%|████████ | 27600/34343 [6:43:29<45:18, 2.48it/s]
Closest words to the center word reliability: ['reliability', 'throughput', 'flexibility', 'usability', 'latency', 'efficiency', 'recompilation', 'compressive', 'bandwidth', 'tensile']
Epoch 2/2: 81%|████████ | 27699/34343 [6:45:40<2:37:38, 1.42s/it]
Epoch 2 Batch 27700 loss: 2.1068646907806396
Epoch 2/2: 81%|████████ | 27700/34343 [6:45:40<2:13:49, 1.21s/it]
Closest words to the center word scientific: ['scientific', 'cognitivism', 'anthropological', 'empirical', 'anthropic', 'nativist', 'epistemological', 'falsifiable', 'psychoanalytic', 'pseudoscience']
Epoch 2/2: 81%|████████ | 27799/34343 [6:47:19<26:54, 4.05it/s]
Epoch 2 Batch 27800 loss: 2.085338592529297
Epoch 2/2: 81%|████████ | 27800/34343 [6:47:20<42:33, 2.56it/s]
Closest words to the center word gospel: ['gospel', 'gospels', 'epistle', 'barnabas', 'epistles', 'ephesians', 'apostles', 'hebrews', 'jude', 'philippians']
Epoch 2/2: 81%|████████ | 27899/34343 [6:48:51<41:51, 2.57it/s]
Epoch 2 Batch 27900 loss: 2.1243529319763184
Epoch 2/2: 81%|████████ | 27900/34343 [6:48:52<59:54, 1.79it/s]
Closest words to the center word centres: ['centres', 'iom', 'rajonas', 'centers', 'destinations', 'outskirts', 'tourist', 'shopping', 'wangfujing', 'ifrcs']
Epoch 2/2: 82%|████████▏ | 27999/34343 [6:50:48<14:27:43, 8.21s/it]
Epoch 2 Batch 28000 loss: 2.1093854904174805
Epoch 2/2: 82%|████████▏ | 28000/34343 [6:50:50<11:08:05, 6.32s/it]
Closest words to the center word sense: ['sense', 'cognitivism', 'physicalism', 'prescriptive', 'priori', 'soundness', 'reductionism', 'formalization', 'propositional', 'posteriori']
Epoch 2/2: 82%|████████▏ | 28099/34343 [6:52:21<38:21, 2.71it/s]
Epoch 2 Batch 28100 loss: 2.108693838119507
Epoch 2/2: 82%|████████▏ | 28100/34343 [6:52:22<49:26, 2.10it/s]
Closest words to the center word rather: ['rather', 'thicker', 'fairer', 'semivowel', 'nonexistence', 'less', 'aesthetically', 'overly', 'sweeter', 'relying']
Epoch 2/2: 82%|████████▏ | 28199/34343 [6:53:54<27:50, 3.68it/s]
Epoch 2 Batch 28200 loss: 2.105180501937866
Epoch 2/2: 82%|████████▏ | 28200/34343 [6:53:55<42:41, 2.40it/s]
Closest words to the center word two: ['gwh', 'grt', 'twh', 'kwh', 'hbk', 'cyg', 'sfg', 'pngimage', 'pmid', 'mjs']
Epoch 2/2: 82%|████████▏ | 28299/34343 [6:55:27<22:54, 4.40it/s]
Epoch 2 Batch 28300 loss: 2.079437255859375
Epoch 2/2: 82%|████████▏ | 28300/34343 [6:55:28<37:24, 2.69it/s]
Closest words to the center word rejected: ['rejected', 'denounced', 'contradicted', 'persecuted', 'affirmed', 'ratified', 'criticized', 'dismissed', 'rejects', 'accepted']
Epoch 2/2: 83%|████████▎ | 28399/34343 [6:57:26<2:08:37, 1.30s/it]
Epoch 2 Batch 28400 loss: 2.10756516456604
Epoch 2/2: 83%|████████▎ | 28400/34343 [6:57:27<2:09:23, 1.31s/it]
Closest words to the center word changed: ['changed', 'reverted', 'shifted', 'findable', 'altered', 'renamed', 'ported', 'abolished', 'faded', 'ratified']
Epoch 2/2: 83%|████████▎ | 28499/34343 [6:59:01<34:51, 2.79it/s]
Epoch 2 Batch 28500 loss: 2.1471188068389893
Epoch 2/2: 83%|████████▎ | 28500/34343 [6:59:01<46:10, 2.11it/s]
Closest words to the center word republican: ['republican', 'pluriform', 'sinn', 'presidential', 'bingu', 'democrat', 'eldr', 'reelected', 'senator', 'sandinista']
Epoch 2/2: 83%|████████▎ | 28599/34343 [7:00:23<27:12, 3.52it/s]
Epoch 2 Batch 28600 loss: 2.1108620166778564
Epoch 2/2: 83%|████████▎ | 28600/34343 [7:00:24<41:03, 2.33it/s]
Closest words to the center word george: ['leiserson', 'george', 'earl', 'cormen', 'marquess', 'eldridge', 'custis', 'rivest', 'frideric', 'hervey']
Epoch 2/2: 83%|████████▎ | 28671/34343 [7:01:28<26:28, 3.57it/s] Exception ignored in: <bound method IPythonKernel._clean_thread_parent_frames of <ipykernel.ipkernel.IPythonKernel object at 0x104ea8110>>
Traceback (most recent call last):
File "/Users/ravi.mandliya/.pyenv/versions/3.11.7/envs/blog/lib/python3.11/site-packages/ipykernel/ipkernel.py", line 775, in _clean_thread_parent_frames
def _clean_thread_parent_frames(
KeyboardInterrupt:
Epoch 2/2: 84%|████████▎ | 28691/34343 [7:01:56<1:23:07, 1.13it/s]
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
Cell In[69], line 1
----> 1 word2vec.train(text, batch_size=2048)
Cell In[67], line 62, in Word2Vec.train(self, text, batch_size)
60 # Create tqdm wrapper inside the loop for each epoch
61 tqdm_dataloader = tqdm(dataloader, total=len(dataloader), desc=f"Epoch {epoch+1}/{self.num_epochs}")
---> 62 for idx, (target, context, negs) in enumerate(tqdm_dataloader):
63 self.optimizer.zero_grad()
64 pos_score, neg_score = self.model(target, context, negs)
File ~/.pyenv/versions/3.11.7/envs/blog/lib/python3.11/site-packages/tqdm/std.py:1181, in tqdm.__iter__(self)
1178 time = self._time
1180 try:
-> 1181 for obj in iterable:
1182 yield obj
1183 # Update and possibly print the progressbar.
1184 # Note: does not call self.update(1) for speed optimisation.
File ~/.pyenv/versions/3.11.7/envs/blog/lib/python3.11/site-packages/torch/utils/data/dataloader.py:631, in _BaseDataLoaderIter.__next__(self)
628 if self._sampler_iter is None:
629 # TODO(https://github.com/pytorch/pytorch/issues/76750)
630 self._reset() # type: ignore[call-arg]
--> 631 data = self._next_data()
632 self._num_yielded += 1
633 if self._dataset_kind == _DatasetKind.Iterable and \
634 self._IterableDataset_len_called is not None and \
635 self._num_yielded > self._IterableDataset_len_called:
File ~/.pyenv/versions/3.11.7/envs/blog/lib/python3.11/site-packages/torch/utils/data/dataloader.py:675, in _SingleProcessDataLoaderIter._next_data(self)
673 def _next_data(self):
674 index = self._next_index() # may raise StopIteration
--> 675 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
676 if self._pin_memory:
677 data = _utils.pin_memory.pin_memory(data, self._pin_memory_device)
File ~/.pyenv/versions/3.11.7/envs/blog/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py:51, in _MapDatasetFetcher.fetch(self, possibly_batched_index)
49 data = self.dataset.__getitems__(possibly_batched_index)
50 else:
---> 51 data = [self.dataset[idx] for idx in possibly_batched_index]
52 else:
53 data = self.dataset[possibly_batched_index]
File ~/.pyenv/versions/3.11.7/envs/blog/lib/python3.11/site-packages/torch/utils/data/_utils/fetch.py:51, in <listcomp>(.0)
49 data = self.dataset.__getitems__(possibly_batched_index)
50 else:
---> 51 data = [self.dataset[idx] for idx in possibly_batched_index]
52 else:
53 data = self.dataset[possibly_batched_index]
Cell In[63], line 91, in Word2VecDataset.__getitem__(self, idx)
88 target, context = self.pairs[idx]
90 # Generate negative samples on-the-fly
---> 91 negs = torch.multinomial(
92 self.negative_sample_weights,
93 self.negative_sample_counts,
94 replacement=True
95 )
97 return torch.tensor(target, dtype=torch.long), torch.tensor(context, dtype=torch.long), negs
KeyboardInterrupt:
1
2
3
# print random words in the vocabulary
random.sample(words, 10)
1
2
3
4
5
6
7
8
9
10
['after',
'took',
'asserts',
'russian',
'in',
'performed',
'day',
'two',
'serving',
'conference']
1
word2vec.most_similar("happiness")
1
2
3
4
5
6
7
8
9
10
['happiness',
'goodness',
'repent',
'compassion',
'righteousness',
'atonement',
'forgiveness',
'sinful',
'immanent',
'rationality']
